

techniques industries

Techniques & industries, plus de 60 ans d'expérience au service des professionnels.

Notre volonté d'améliorer sans cesse nos produits est le moteur qui nous fait avancer vers l'avenir avec confiance.

Qualité et éfficacité

- Une veille technologique continuelle
 Nous sélectionons les meilleurs fabricants afin d'allier qualité,
 prix et normes techniques
 - Un service de SAV disponible en atelier et sur site

- Plus de surface de stockage
 Une plateforme logistique facilement accessible
 - Des bureaux de réception

techniques industries

Tuyauteries, Robinetteries, Pompes, Raccordement : Vente, SAV en atelier et sur site

Tel: 03.22.712.712 - Mail: tecindus@orange.fr - www.techniquesindustries.fr

ZA LA COUTURE 80260 POULAINVILLE

DISTRIBUTEUR DE LA MARQUE

Pièces & S.A.V sur site et en atelier

SOMMAIRE

COMPRESSEURS & ACCESSOIRES POMPES & ACCESSOIRES TUYAUTERIE LANIERES & PANNEAUX SOUPLES RACCORS & COLLIERS ROBINETTERIES ELECTROVANNE & MESURE AUTOMATISME & REGULATION

COMPRESSEURS & ACCESSOIRES

SOUFFLETTE METAL

DESIGNATION	REF
SOUFFLETTE METAL	020SOUFO8

BUSE ACIER POUR SOUFFLETTE

DESIGNATION	LONGUEUR	REF
BUSE ACIER	100mm	020BUSE100
BUSE ACIER	250mm	020BUSE250

REGULATEUR DE SOUFFLETTE

Les nouvelles normes de sécurité imposent pour l'utilisation des soufflettes, une pression maximum de soufflage de 3 bars. Ce réducteur de pression régule automatiquement une pression de sortie de 3 bars pour une pression amont comprise entre 3 et 10 bars.

DESIGNATION	REF
REGULATEUR DE SOUFFLETTE	020REGU08

Raccordement MxF 1/4 à monter directement sur la soufflette.

COUPLEUR D'AIR

COUPLEUR AUTO. FEM 1/4 01CF08	

EMBOUT D'AIR POUR TUYAU

EMBOUT MALE OU FEMELLE

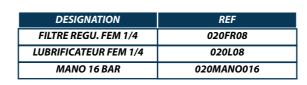
DESIGNATION	REF
EMBOUT MALE G 1/4	020EM08
EMBOUT FEMELLE G 1/4	020EF08

FLEXIBLE SPIRALE

DESIGNATION	MATIERE	DIAMETRE	LONGUEUR	RACORDEMENT	REF
SPPU0604	PU	6mm	4M	1/4M	020SPPU0604
SPPU1006	PU	10mm	6M	1/4M	020SPPU1006
SPR10604	RILSAN	6mm	4M	1/4M	020SPRI0604
SPRI1006	RILSAN	10mm	6M	1/4M	020SPRI1006

COMPRESSEUR 100L - Monophasé

RI	EF	PUISSANCE HP/KW	RESERVOIR LITRES	VOLUME m3/H		VITESSE ROTATION		DIMENSIONS mm	POIDS Kg
020C2PC	V100M22	3/2,2	100	20	10	1250 Tr/mn	220/50/MONO	1025x435x915	69


COMPRESSEUR 200L - Triphasé

REF	PUISSANCE HP/KW	RESERVOIR LITRES	VOLUME m3/H	PRESSION BAR	VITESSE ROTATION	TENSION V/Hz	DIMENSIONS mm	POIDS Kg
020C2PC200T30	4/32	200	9	102	1400 Tr/mn	400/50/TRI	1520x445x1015	105
	<u> </u>		•	•	•			

FILTRE MANO REGULATEUR

RESERVOIRS VERTICAUX

Pour l'eau préssurisée

Réservoirs eau préssurisée verticaux en acier galvanisé à chaud intérieur/extérieur.

Homologation CE 97/23 du 100 L au 1000 L.

Traçabilité 100% - Livrés avec certificat d'épreuve.

PS:8 bar-TS:+5°C/+50°C.

RESERVOIRS HORIZONTAUX

Réservoirs air comprimé horizontaux en acier galvanisé à chaud intérieur/extérieur.

- Longévité et sécurité Traçabilité 100%.
- Homologation CE 87/404 du 100 L au 900L Livrés avec certificat d'épreuve.
- 5 orifices arrivée / départ Anneau de levage.
- 4 pieds avec perçage pour fixation au sol.
- Fluide : air.
- PS: 11 bar TS: -10°C / +100°C.
- La version équipée est composée d'un kit comprenant : Soupape, Vanne, Bobines, Coudes, Réducteurs, Manomètre, Bouchons.

RESERVOIRS

Peints verticaux

Réservoirs air comprimé verticaux en acier carbone de 25L à 900L.

Homologation 2009/105 CE.

Tracabilité 100 %.

Revêtement extérieur bleu RAL 5015.

Fluide: air.

PS: 11 bar - TS: - 10 °C / + 120°C.

Livrés avec certificat de conformité et d'épreuve CE.

FILTRE A CARTOUCHE

- Corps aluminium revêtu peinture epoxy bleue.
- PS: 16 bar TS: +5°C / +50°C.
- Filtration charbon actif Grade XAC 0,003 mg/m3 (classe 3 selon ISO 8573.1).
- Traitement intérieur anti-corrosion.
- Manomètre indicateur de colmatage
- Purgeur automatique à flotteur.
- Raccordements taraudés G.

PURGEUR CAPACITIF

- Purgeur capacitif
- Réservoir interne avec contrôle de niveau électronique à flotteur.
- Filtre amont incorporé.
- Diode de contrôle alimentation Diode de contrôle purge.
 Alarme de dysfonctionnement Fonction test.
- Alimentation 230 Vca.
- Raccordement électrique par P.E PG 9.
- Montage horizontal uniquement.

PS: 16 bar - TS: +60 °C

PURGEUR PROGRAMMABLE

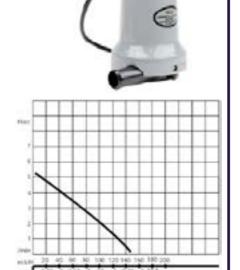
- Purgeur capacitif
- Fréquence d'ouverture : 1 à 60 minutes.
- -Temps d'ouverture : 2,4 ou 6 secondes.
- PS : 16 bar TS : 65 °C.
- Débit maxi condensat : 32 l/h Alimentation 230 Vca.
- Dimension 43 x 89 x 90 mm
- Encombrement: 85 mm.
- Hauteur mini sous cuve: 110 mm.
- Raccordement électrique par connecteur (fourni).
- Raccordement amont: G 1/2» M.
- Raccordement aval : G 3/8» M et embout cannelé Ø 10.

Montage horizontal ou vertical.

Fonction test.

NOTES

POMPES & ACCESSOIRES


ETUDE ET DEVIS SUR DEMANDE

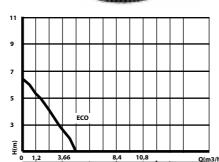
TECNIRELEV 12V

Electropompes submersible

- Haute Efficacité, à faible bruit. Moteur à aimant permanent
- Faible consomation éléctrique Voltage 12V
- Capot en plastique de grande qualité pour un usage extérieur longue durée.
- Traitement anti-acides et anti-alkalis.
- Corps de pompe, couvercle, turbine ouverte polypropylène GF.
- · Crépine en Nylon.
- · Arbre en acier inox.

REF	TENS.	P2 UTILE	INT.	ø REFOUL.
	V	W	W	INCH
TECNIRELEV 12V	12	132	11	25

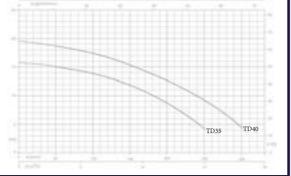
Pompe de relevage eau de mer (pompe vide cale). Domestique, marine, loisir. Usage intermittent.


TECNIRELEV ECO

Pompe de relevage eaux claires

Les électropompes sont adaptées au drainage des eaux pluviales, des eaux d'infiltration et évacuation des eaux domestiques en général.

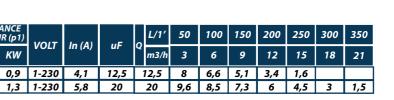
Pour l'irrigation par écoulement des jardins et potagers, pour le transvasement d'eaux claires, faiblement usées.


MODELE		ØI	nm	VOLT	P2W	CABLE	Amp	KG	Dime	nsion		NIV	EAU	
TECNIRELEV ECO 25 1" 230V 100 3m HO5RNF 1,4 3,1 240 155 100 30 300 70	MODELE	tuyaux	orifice refoulement			CABLE	Amp	λĠ	Htr	ømaxi	amorçage	asséchement	marche	a rrêt
	TECNIRELEV ECO	25	1″	230V	100	3m HO5RNF	1,4	3,1	240	155	100	30	300	70

TECNIDRAIN Submersible

Pompes de drainage avec turbine ouverte pour le pompage de liquides avec corps en suspension. Caractérisées par une hauteur manométrique élevée par rapport au type et aux dimensions de la

				DIMEN	SIONS				-	
REF	В	С	D	E	H2	Mt	DNM	Кд		
TD 35	105	330	218.5	45	70	190	1"1/2G	12		
TD40	105	330	218.5	45	70	190	1"1/2G	14		
									1.7	



TECNIRELEV 35

Electropompes submersible à vortex pour eaux d'égout

- Moteur à sec.
- Indice de protection IP 68.
- Classe d'isolation F.
- Alimentation monophasée avec condensateur enclenché en permanence et protection thermique incorporée dans le bobinage du moteur.
- Chambre de connexion câbles complètement isolée.
- Roulements à billes autolubrifiants.
- Vitesse de rotation 2850 tours/1'.

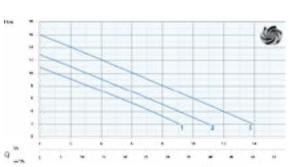
	TR35/11			
	TR35			
			-	
		TR35	TR35	TR35

TECNIRELEV 50

Electropompes submersible à vortex pour eaux d'égout (WC compris)

- Moteur à sec.
- Indice de protection IP 68.
- Classe d'isolation F.
- Alimentation monophasée avec condensateur enclenché en permanence et protection thermique incorporée dans le bobinage du moteur.
- Chambre de connexion câbles complètement isolée.
- Roulements à billes autolubrifiants.
- Vitesse de rotation 2850 tours/1'.

HOOKE.	Poex	ripal ripal	Per H	ater er (P1)	VOLTAGE				Vinin	50	9		180	200	2	18	200	499		
	100	kW	HP	kW	M	ä		h	mills	3		•	,	12	- 3	5	18	24		
50 M	1,2	0,9	1,8	1,3	1-230	6	20) n	cu/mw	10)	9	7,8	6,	3 :	5	3,8	1		
MODEL.	Powe				VOLTAGE IVI	in in	,,	0	Umin m²/h									550 33		
50 T	3,2	2,4	4	3	3~400	5,5		ma	eltwc	17,3	16,5	5,6	14,7	13,7	12,7	10,5	8	6,7	5,4	4
50 MS	1,4	1	2	1,5	1-230	7	20	myc	elmwc	10,5	10	9,2	8,2	7,2	6,2	4,1	1,7			



TECNIRELEV 65

Electropompes submersible à vortex pour eaux d'égout (lisier)

Les pompes TECNIRELEV 65 sont entièrement fabriquées en fonte et elles sont conçues pour une utilisation continue dans des installations fixes. Réalisées sur le principe du fonctionnement à vortex avec roue en retrait.

- Moteur à sec.
- Indice de protection IP 68.
- Classe d'isolation F.
- · Alimentation monophasée avec condensateur enclenché en permanence et protection thermique incorporée dans le bobinage du moteur.
- Alimentation triphasée avec protection extérieure au soin de l'utilisateur.
- Roulements à billes autolubrifiants.
- Vitesse de rotation 2850 tours/1'.

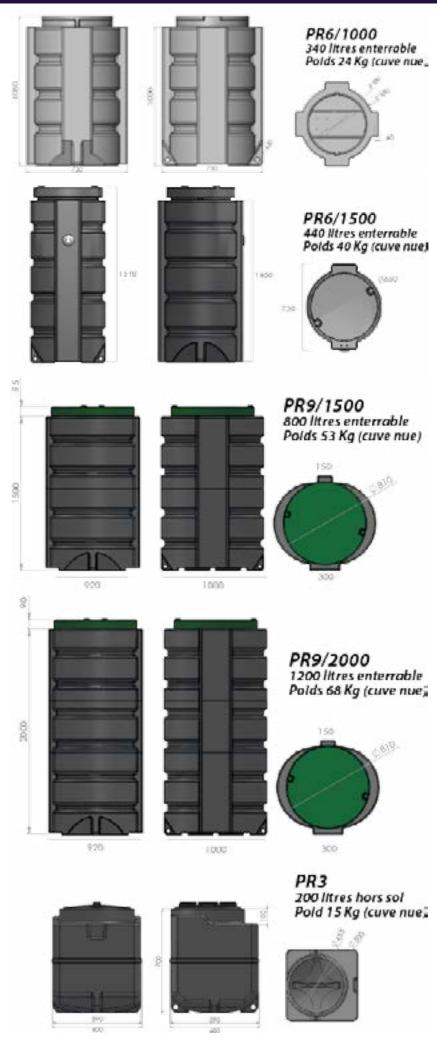
techniques industries tecindus@orange.fr/TEL: 03.22.712.712

POSTE DE RELEVAGE PR3 - PR6 - PR9

Type de pompe	PR3	PR6/1000	PR6/1500	PR9/1500	PR9/2000	
TReco						- 7
TD 40	. 1					eau daire
TR35 M		- 83	20	-	13	-70,000,000
TR50 M	- 20	1	1	-	- 1	eau+WC
TR 50 MS			1	1 ou 2	1 ou 2	non collect
TR SOT		- 1	- 1	1 ou 2	1 ou 2	eau+WC
TR 65 T TR 65 MS				1 nu 2	Tou 2	collectivité

Pompe sur pied raccordée par un tuyau souple Pompe sur pied d'assise double barres de guidage

REHAUSSE



- OPTIONS:
 Panier degrilleur (uniquement pour PR9)
- Rehausse de cuve:
 - .PR6 = 400mm
 - .PR9 = 500mm
- Coffret électrique pour pompe mono TR50MS et TR65MS
- Coffret électrique pour pompe tri
- Coffret d'alarme avec flotteur
- Sonde PIEZO

PANIER DEGRILLEUR

techniques industries tecindus@orange.fr / TEL: 03.22.712.712

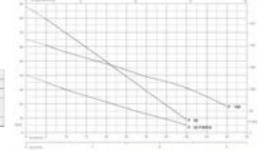
TECNIEVO-A

Electropompes centrifugés multicellulaires auto-amorçantes

TECNI EVO-A est une électropompe horizontale centrifuge multi-étage auto-amorçante avec bouche d'aspiration à filetage axial et bouche de refoulement radiale filetée. L'innovation hydraulique à haute efficacité est reliée à un moteur de dernière génération à garniture mécanique.

- Type de liquide: eau propre sans corps solides en suspension ou matériau abrasif
- Température maximale du liquide 50°C
- Pression maximale d'exercice 8 bar

		ANCE JR (p2)		ANCE UR (p1)	VOIT	t- (A)		L/1'	10	20	30	40	50	60	80
REF	HP	KW	HP	KW	VOLT	In (A)	uF	m3/h	0.6	1.2	1.8	2.4	3	3,6	4,8
TECNIEVO-A 3-40M	0,68	0,51	1.1	0.8	1-230	3,7	12,5	mca/mcw							
TECNIEVO-A 3-40M-C	0,68	0,51	1.1	0.8	1-230	3,7	12,5	mca/mcw	42,5	39,5	35,5	31	25,5	20,5	9
TECNIEVO-A 3-40T	0,71	0,53	1.05	0.78	3-230/400	2,7 / 1,55		mca/mcw							
TECNIEVO-A 3-50M	0,94	0,7	1.34	1	1-230	4,4	16	mca/mcw	56.5	53	48.5	42	35.5	28.6	13
TECNIEVO-A 3-50T	0,94	0,7	1.34	1	3-230/400	3,3 / 1,9		mca/mcw	30,3	33	40,3	72	33,3	20,0	,,
TECNIEVO-A 3-60M	1.2	0,9	1.68	1.25	1-230	5,7	20	mca/mcw	70.5	67	62	55.5	48	39.5	20
TECNIEVO-A 3-60T	1.1	0,82	1.57	1.17	3-230/400	3,5/2		mca/mcw	70,5	٠,	02	33,3	70	35,5	20



TECNIFUEL Périphérique

Pompes volumétriques périphériques à aspiration frontale, aptes aux petites installations domestiques et pour des applications industrielles légères; caractérisées par un excellent rapport entre performances offertes et puissance demandée.

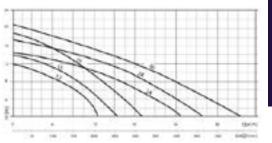
	- 4	TYTE						AM	re.rei			0.1470	- Wedst		
					30	- 3	16	100	1	0.3	0.6	1.2	1.6	2.4	1
	1		5.	1 '	3	15	M.	la.	2-	. 0	7.8	23	(6)	41	10
	1-4		-	100				made V	Avenue V Service			40	rie/		
		100		(940)	1800	3-	25.	SHTS.	No.						
į	50		m t	0.0	0.31	0.5	0.0	2,2	1	21	20	25	12		

MULTITEC

Electropompes centrifuges multicellulaires auto-amorçantes

Les pompes MULTITEC auto- amorçantes centrifuges multi-étages horizontales sont indiquées pour développer une importante pression ainsi qu'un grand débit dans un silence absolu avec une consommation d'énergie réduite.

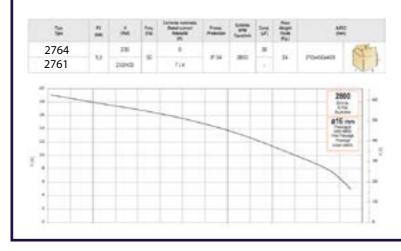
	MODILE	Puise	inie IP2I	Pulse	ante er IP18	0.0000	in .	350	W.	28	48	100	148	188		Ξ		AB AB	_	_					
	- Colonia	117				WOLT	IN		mile	u	34		14	16.8	-		+	100	_		-				
Ī	WATER FEET	ta	- (9	1.5 1.5	1 - 121 - 603 1 - 121 - 603	12 972	20		117	101	Tie	lts.	111				767		-	1	-	1	1	i
	MACHINE F 12 T	-13	u	GE 52	18	1 - 130 - 631 N 2 - 130 - 631 N	37-03	D	2	4.3	423	367	33	177									\rightarrow	7	ļ
	Welling / (E.S.	1	15	13	12	1 - 120 - 400 F	1342	a	2	5.1	314	4		21.5	3		-				-	-		-	
	MATERIA EL	. (3)	U	. 12	2.6	3+181+4008	13-01			#12	14	18.1	423	261		*			-	18	*	198	140	9.4	ö

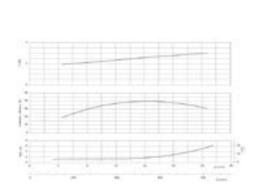

TECNIEL 50PP

Electropompes auto-amorçantes avec pré-filtre

Les pompes de la série TECNIEL 50PP ont été conçues pour obtenir une grande fiabilité de fonctionnement dans la filtration et le recyclage de l'eau traitée avec du chlore.

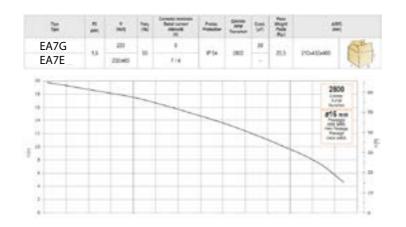
- Indice de protection IP X5.
- Classe d'isolation F.
- Alimentation monophasée avec condensateur enclenché en permanence et protection thermique incorporée dans le bobinage du moteur.
- Alimentation triphasée avec protection extérieure au soin de l'utilisateur.
- Roulements à bille autolubrifiants.
- Vitesse de rotation 2850 tours/1'.
- Adaptée pour utilisation continue.

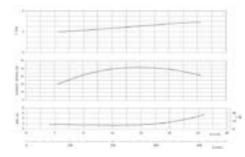



			PUISS MOTEU			In (A)	иF	٥	L/1′	100	150	200	300	350	400	450	500
REF	HP	KW HP KW	VOLI	In (A)	ur	۲	m3/h	6	9	12	18	21	24	27	30		
TECNIEL 50M/50T	2	1,5	2,55	1,9	1-230	8,5	35	m	ca/mcw	18,5	17	15,5	12	10,5	8	6	3,5
TECNIEL 50M/50T			1,5 2,55 1,9	3-420	6-3,6												

TECNIEL 50F

Electropompe auto-amorçante


Electropompe auto-amorçante monobloc avec turbine ouverte à plusieurs pales. Indiquée pour le transvasement d'eau claire ou légèrement chargée, mais absolument pas abrasive.



TECNIEL 501Electropompes auto-amorçantes

Indiquée pour eaux acides, pour transfèrer acides dilués, subs-tances et restes alimentaires liquides, récupération de pertes des installations chimiques.

POMPE VOLUMETRIQUE

Pompe volumétrique à vis excentrée

La pompe multifonctions modèle VPS standard est une excellente pompe, économique pour les fluides propres jusqu'à des produits visqueux avec ou sans matière solide, pour la plupart des appli-

Max fluid flow 500 m3/h Max. (discharge) 48 bar pressure Certificates Atex. Max. temperature 0 °C Max. solids particle 0 mm

POMPE VOLUMETRIQUE

Pompe volumétrique à double menbranes

La pompe non métallique est une pompe pneumatique à double membrane compacte appropriée pour des transferts/vidanges de fûts ou pour des dosages basiques.

La pompe pneumatique est la meilleure solution pour les applications nécessitant plus qu'un transfert de fluide. Les liquides contenant des matières solides, des fluides visqueux ou collants seront également traités sans problème.

Max. flow Max. (discharge) 84 bir pressure 1/21 RSP/NPT Air conn. Liquid conn. Combi flange DIN DN50 - 2" Att 150 Liquid conn

POMPE VOLUMETRIQUE Pompe volumétrique péristaltique

des produits chimiques.

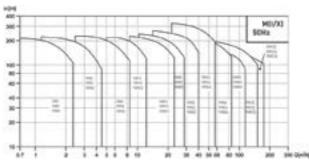
Pompe péristaltique pour le dosage et les applications à faible débit. Les pompes péristaltiques à tuyaux sont la solution idéale pour le pompage des liquides et le dosage

Max, flow	39 l/h
Max. (discharge)	8 bar
pressure	
Max. temperature	50 °C
Max. solids particle size	1,75 mm
Certificates	Atex

Max. flow	15300 l/h
Max. (discha	rge) 16 bar
pressure	
Max. temper	rature 90°C
Max. solids size	particle 13.75 mm
Certificates	Atex

M/MI/MX

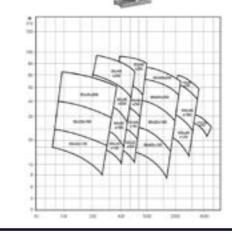
Pompes centrifuges verticales multicellulaires


Les pompes M, MI et MX sont des pompes multicellulaires verticales non auto-amorçantes avec bride « in- line » ou avec raccord Victaulic, avec des orifices d'aspiration et de sortie de taille identique.

Construction multicellulaire avec rotors, chambres et carter sous pression en acier inoxydable. L'arbre de liaison de la pompe et l'arbre du moteur normalisé CEI forment une construction monobloc.

Toutes les pompes sont équipéesde moteurs à haut rendement (IE3) et d'une garniture mécanique d'étanchéité de type cartouche pour une maintenance en toute facilité.

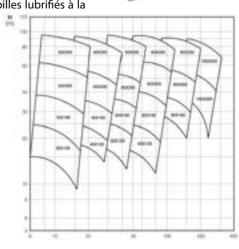
Les pompes M, MI et MX ont des dimensions différentes ainsi qu'un nombre différent d'étages afin de fournir la pression et le débit requis.


- · Moteur électrique asynchrone avec stator fermé et ventilation externe
- Les principales dimensions sont conformes aux normes DIN et CEI.
- Efficacité énergétique: IE3 (IE1-IE2 moteurs disponibles sur demande)
- Isolation de classe F
- Indice de protection IP55
- Température ambiante maximale 50°C
- Vitesse de rotation 2900 tr/min

NORM-F ÉLECTROPOMPES CENTRIFUGES NORMALISÉES MONOBLOC (2 - 4 PÔLES)

Les électropompes de la série NORM sont monoblocs mono-roues avec une liaison de la partie hydraulique moteur par lanterne avec corps pompe réalisé conformément à la norme EN733/DIN24255. Les pompes peuvent d'être installées dans toutes les positions sauf dans celle avec la bouche aspirante orientée vers le haut.

- · À induction, fermé ventilé. • Indice de protection IP68 : IP 55.
- Isolation : classe F.
- Forme de construction : B3/B5.
- Vitesse de rotation :
- NF4 1450 tr/min.
- NF2 2900 tr/min.

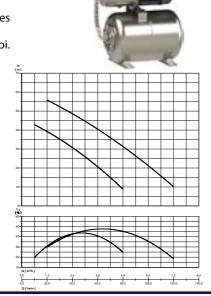


NORM-FC

ÉLECTROPOMPES CENTRIFUGES NORMALISÉES BASE JOINT (2 - 4 PÔLES)

Les électropompes de la série NRB sont de type centrifuge mono-étages à axe horizontal et sont conçues conformément à la norme EN733/ DIN24255 de manière à avoir une interchangeabilité maximale des composants. La roue est équilibrée dynamiquement et hydrauliquement. L'arbre est adéquatement surdimensionné pour en garantir la rigidité et est soutenu par de robustes roulements à billes lubrifiés à la graisse.

- Fermé, ventilé de l'extérieur.
- Indice de protection IP55.
- Forme constructive B3.
- Classe d'isolation F.
- · Alimentation triphasée.
- Vitesse de rotation 2850 tours/1'.
- · Service continu.


GROUPES DE SURPRESSION

Avec vase d'expansion horizontal

Les groupes de surpression sont réalisés avec des électropompes centrifugés multicéllulaires auto-amorçantes MultiEVO-A .

Ils sont fournis câblés, avec un vase d'expansion de 24 ou 50 l, prêts à l'installation et à l'emploi. Tous les modèles sont certifiés pour l'utilisation avec de l'eau potable (ACS).

MODELE		ence 10 (P2)	Pulse	ence (e P1)	Tension				Lenn	10	23	30	40	10		10	100	130
	HP	ker	10	KW	660		넯	Ĭ	milh	G.6	u	u	2.4	3	3,6	48		7.2
WE HAVE SYCLAD 40 M.	6.67	6,5	1.5	6,8	1-330	3,7	12,5	Г	li.	200				40.0		9		
AF (Not 0/0 A3 40 A 18)	0,67	4.5	1,1	6,8	1-230	1,7	123	ì	11	42,3	29,5	19,5	311	45,3	29,3			
WE FROM TYO 4.5-50 M-55	3,34	1	1,8	1.35	1-230	6,2	20		41		22	-		-	40.5			-
AP I MUR DVO AS 50 AA 10	1,34	1	1,8	1.35	1-230	1,2	20		R		100	12	48.5	-	40,3	81	21,8	14

GROUPES DE SURPRESSION

Pompes centrifuges verticales et horizontales. Systèmes complets pour transfert et la surpression d'eau. AUTOJET AUTOMAX sont groupe automatique pour augmenter la pression dans l'installation hydrique domestique. Composé d'une électropompe monophasée de type Jetinox ou Max et du dispositif électronique.

A-DHR groupe automatique pour augmenter la pression dans l'installation hydrique.

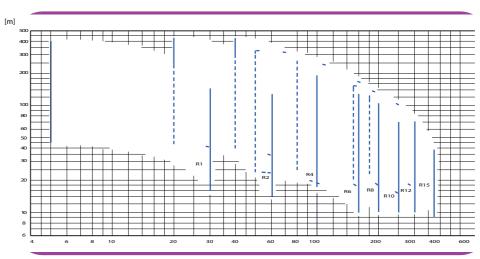
Les groupes de surpression WATERPRESS sont réalisés avec les pompes centrifuges auto-amorçantes de la série JET, JETINOX ou MAX. Ils sont fournis câblés, dotés de vase d'expansion, prêts pour l'installation et l'utilisation.

VARIO et CPS sont un dispositif électronique en mesure de varier la fréquence d'une électropompe. Directement intégré sur le moteur, il permet d'en régler la vitesse de manière à toujours fournir la même pression à l'installation même lorsque la demande en eau change. VARIO et CPS sont une solution compacte, essentielle, fiable et facile à utiliser ; également conçu pour offrir un confort élevé et desavantages au niveau des applications dans les secteurs de l'irrigation, des serres, de l'industrie légère, des fontaines et des jeux d'eau.

VARIATEUR DE FRÉQUENCE ce sont des groupes pour la pressurisation automatique de réseaux de distribution de l'eau avec alimentation électrique triphasée, avec commande à transducteur et vitesse variable.

EASYBOOST, PRESSOMAT E SENSORMAT ce sont des groupes pour la pressurisation automatique de réseaux de distribution composés de 2 à 4 électropompes, avec ou sans pompe de compensation.

POMPE DE FORAGE



ELECTROPOMPES IMMERGEES TUBEE 4" (SERIES 95 PR N/)

>Les électropompes immergées série 95 PR N/ sont les plus petites de la large gamme des immergées importées par AMITEC. Le concept innovateur (Breveté) de la roue flottante favorise le flux de l'eau dans la pompe avec d'importants avantages hydrauliques et de fonctionnement ADVANTAGES >Haut rendement >Resistance au sable (usure quasiment éliminée) >Encombrement réduits >Hausse considérable de la duré e de fonctionnement > Absence quasiment de l'entretien a la partie hydraulique.

MATERIAUX >Les matériaux d'exécution standard sont: >Roue en technopolymère (Lexan) >Diffuseur en technopolymère (Noryl GFN2) >Elément intermédiaire en Acier Inox AISI 304 >Chemise de blocage en Acier Inox AISI 304 >Pièce de refoulement et cage d'aspiration en laiton >Clapet de retenue en Acier INOX AISI 304 incorporé. Outre aux matériaux de construction de série, les pompes peuvent être fournies avec des pièces de refoulement et cages d'aspiration en micro-fusion Acier INOX AISI 304. CHAMPS DE PERFORMANCES >Capacitè jusqu'a 22 m ³/h >Hauteur manometrique jusqu'à 470m >Puissances jusqu'à 10 HP (7,5 Kw) >Quantitè maximale de sable tolèree dans l'eau:300g/m ³

techniques industries tecindus@orange.fr / TEL: 03.22.712.712

POMPE DE FORAGE

FI-4 PR1 N (4")

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

H = Prevalenza totale. Da 39 a 402 m

 $\eta\%$ = Rendimento della pompa. Max 49,8 %

W/st = Assorbim. per stadio. Max 32,20
Massimo contenuto di sabbia. 300 g/m³

Q = Portata. Da 5 a 35 l/min

S = Battente minimo (m) Max 1

H = Total head. From 39 to 402 m

Q = Capacity. From 5 to 35 l/min

η% = Pump efficency. Max 49,8 %

Maximum sand content 300 g/m³ S = Minimum head (m) Max 1

Q = Débit. From 5 to 35 l/min

S = Niveau minimal (m). Max 1

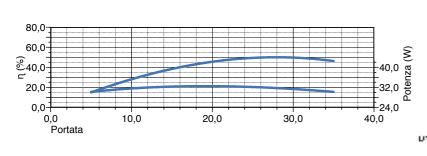
Q = Caudal. De 5 a 35 l/min

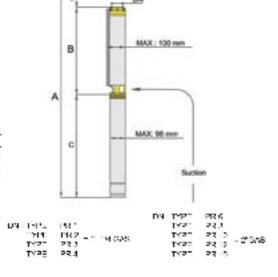
H =Altura manométrica. Da 39 a 402 m

Condenito màximo de arena. 300 g/m³ S = Nivel minimo (m) Max 1

η% = Rendimiento de la bomba. Max 49,8 %

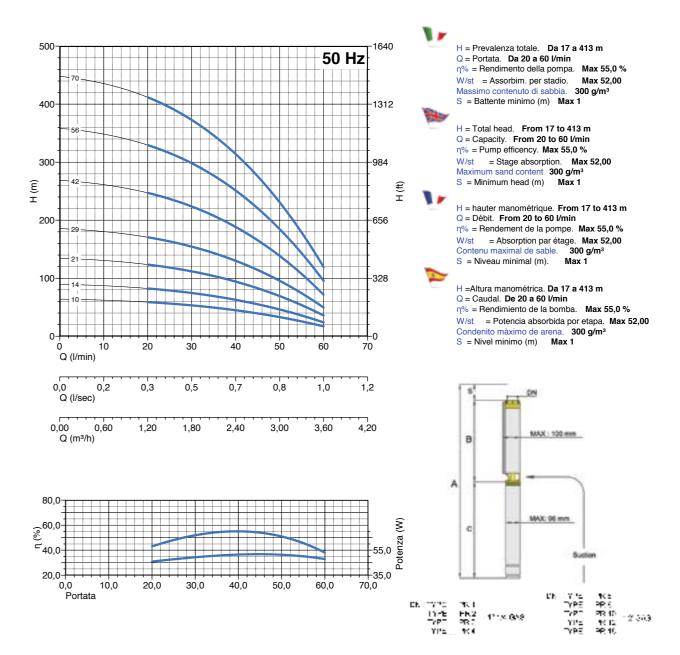
W/st = Potencia absorbida por etapa. Max 32,20


W/st = Stage absorption. Max 32,20


H = hauter manométrique. From 39 to 402 m

η% = Rendement de la pompe. Max 49,8 %

W/st = Absorption par étage. Max 32,20 Contenu maximal de sable. 300 g/m³


					otor - M ne a 290					Q=Por	tata - C	apacity	- Debit		
		Pov	vor		Fase phase	٧	I/min	0	5	10	15	20	25	30	35
	Tipo - Type	100	vei		30	400	l/sec	0,00	0,08	0,17	0,25	0,33	0,42	0,50	0,58
		kW	HP	Α	μF	Α	m³/h	0,0	0,3	0,6	0,9	1,2	1,5	1,8	2,1
ľ	PR 1 N/12	0,37	0,5	3,5	12,5	1,3		72	71	67	63	58	53	47	39
	PR 1 N/18	0,55	0,75	5	16	1,7		108	106	100	95	87	79	70	59
	PR 1 N/24	0,75	1	6,5	20	2,2	H[m]	144	142	134	126	116	106	94	78
	PR 1 N/35	1,10	1,5	9,6	30	3,1		210	207	195	184	169	154	137	114
	PR 1 N/45	1,50	2	11,8	40	4		270	266	251	236	217	198	176	146
	PR 1 N/68	2,20	3	15,2	50	5,8]	408	402	379	357	328	300	266	221

	- 1									_
$\frac{1}{1}$					_	ombro s and				
3		Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg
╗	1	PR 1 N/12	742	675	425	317	250	6	7	4,5
╗	1	PR 1 N/18	894	874	557	337	317	8	8	5,7
╗	1	PR 1 N/24	1073	1048	711	362	337	10	10	7
		PR 1 N/35	1345	1315	953	392	362	12	12	9,3
5		PR 1 N/45	1617	1587	1195	422	392	13	13	11,5
		PR 1 N/68	2190	2175	1723	467	452	15	15	14,5

POMPE DE FORAGE

FI-4 PR2 N (4")

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

			ore - Mo teristich					Q=Por	tata - C	apacity	- Debit	
	Pov	vor		Fase phase	V	I/min	0	20	30	40	50	60
Tipo - Type	POV	ver		30	400	l/sec	0,00	0,33	0,50	0,67	0,83	1,00
	kW	HP	А	μF	Α	m³/h	0,0	1,2	1,8	2,4	3,0	3,6
PR2 N/10	0,55	0,75	5	20	1,7		64	59	53	45	33	17
PR2 N/14	0,75	1	6,5	30	2,2	i i	90	83	74	63	46	24
PR2 N/21	1,10	1,5	9,6	40	3,1	1	134	124	111	95	69	36
PR2 N/29	1,50	2	11,8	50	4,0	H[m]	186	171	154	131	96	49
PR2 N/42	2,20	3	15,2	76	5,8]	269	248	223	189	139	71
PR2 N/56	3,00	4	-	-	7,5		358	330	297	252	185	95
PR2 N/70	4,00	5,5	-	-	9,8]	448	413	371	315	231	119

Dimensioni di ingombro e pesi Overall dimensions and weights												
Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg				
PR2 N/10	718	698	381	337	317	8	8	4				
PR2 N/14	831	806	469	362	337	10	10	4,3				
PR2 N/21	1037	1007	645	392	362	12	12	5,3				
PR2 N/29	1243	1213	821	422	392	13	13	6,5				
PR2 N/42	1596	1581	1129	467	452	15	15	8,3				
PR2 N/56	0	1994	1437	0	557	0	19	10,8				
PR2 N/70	0	2364	1767	0	597	0	22	13,4				

techniques industries tecindus@orange.fr / TEL: 03.22.712.712

POMPE DE FORAGE

FI-4 PR3 N (4")

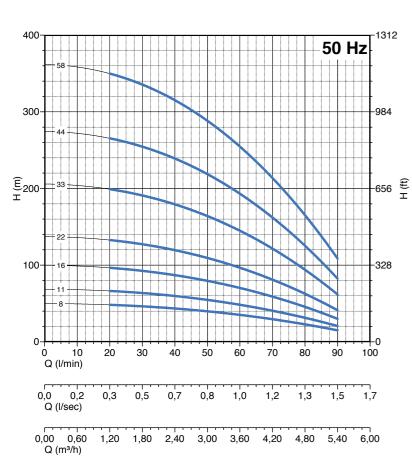
CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

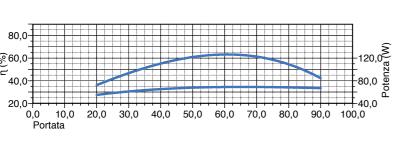
> H = Prevalenza totale. Da 15 a 348 m Q = Portata. Da 20 a 90 l/min

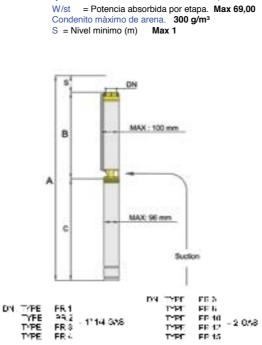
H = Total head. From 15 to 348 m Q = Capacity. From 20 to 90 l/min $\eta\%$ = Pump efficency. Max 63,0 % W/st = Stage absorption. Max 69,00 Maximum sand content 300 g/m³

S = Minimum head (m) Max 1

Q = Débit. From 20 to 90 l/min


 $\eta\%$ = Rendimento della pompa. Max 63,0 % W/st = Assorbim. per stadio. Max 69,00 Massimo contenuto di sabbia. Max 69,00 S = Battente minimo (m) Max 1

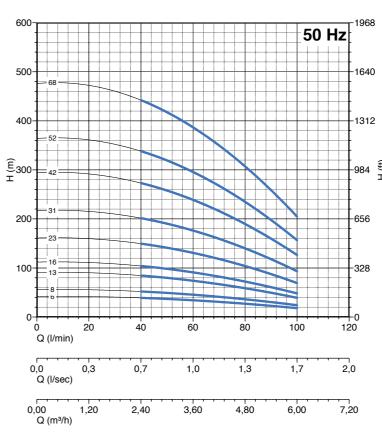

H = hauter manométrique. From 15 to 348 m

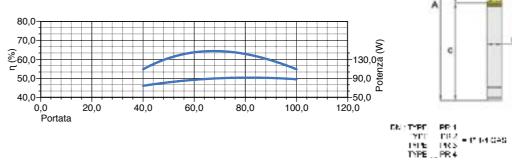

η% = Rendement de la pompe. Max 63,0 % W/st = Absorption par étage. Max 69,00 Contenu maximal de sable. 300 g/m³ S = Niveau minimal (m). Max 1

H =Altura manométrica. **Da 15 a 348 m** Q = Caudal. **De 20 a 90 l/min**

η% = Rendimiento de la bomba. Max 63,0 %

				otor - M ne a 290					Q=	Portata	- Capa	city - De	ebit		
	Pov	wor		Fase phase	V	I/min	0	20	30	40	50	60	70	80	90
Tipo - Type	FOV	vei		30	400	l/sec	0,00	0,33	0,50	0,67	0,83	1,00	1,17	1,33	1,50
	kW	HP	Α	μF	Α	m³/h	0,0	1,2	1,8	2,4	3,0	3,6	4,2	4,8	5,4
PR3 N/08	0,55	0,75	5	20	1,3		50	48	46	44	40	35	29	23	15
PR3 N/11	0,75	1	6,5	30	1,7	1	69	66	63	61	55	48	40	32	21
PR3 N/16	1,10	1,5	9,6	40	2,2	1	100	96	92	88	80	70	58	46	30
PR3 N/22	1,50	2	11,8	50	3,1	H[m]	138	132	127	121	110	96	80	63	41
PR3 N/33	2,20	3	15,2	76	4	1	206	198	190	182	165	144	120	95	62
PR3 N/44	3,00	4	-	-	5,8	1	275	264	253	242	220	193	160	127	83
PR3 N/58	4,00	5,5	-	-	9,8	1	363	348	334	319	290	254	210	167	109


_									
		Dimen Overall							
	Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg
1	PR3 N/08	674	654	337	337	317	8	8	3,7
1	PR3 N/11	765	740	403	362	337	10	10	4,5
	PR3 N/16	927	897	535	392	362	12	12	5,7
1	PR3 N/22	1089	1059	667	422	392	13	13	7,2
	PR3 N/33	1376	1361	909	467	452	15	15	10
1	PR3 N/44	0	1730	1173	0	557	0	19	12,7
	PR3 N/58	0	2100	1503	0	597	0	22	16,2

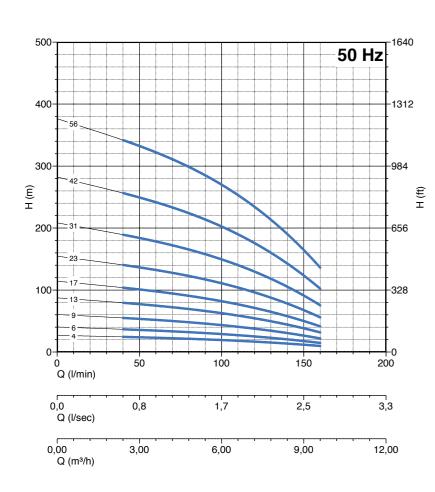

POMPE DE FORAGE

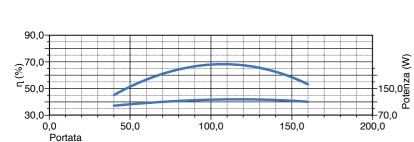
FI-4 PR4 N(4")

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

H = Prevalenza totale. Da 18 a 442 m

łΖ	-		Q = Portata. Da 40 a 100 l/min n% = Rendimento della pompa. Max 64,5 %
	- - -1640 -		W/st = Assorbim. per stadio. Max 92,00 Massimo contenuto di sabbia. 300 g/m³ S = Battente minimo (m) Max 1
	- -1312 -		H = Total head. From 18 to 442 m Q = Capacity. From 40 to 100 l/min η% = Pump efficency. Max 64,5 % W/st = Stage absorption. Max 92,00
	-984 ± -984 ±	10	Maximum sand content 300 g/m³ S = Minimum head (m) Max 1
	- - - -656 -		H = hauter manométrique. From 18 to 442 m Q = Débit. From 40 to 100 l/min η% = Rendement de la pompe. Max 64,5 % W/st = Absorption par étage. Max 92,00 Contenu maximal de sable. 300 g/m³ S = Niveau minimal (m). Max 1
	-328 -		H =Altura manométrica. Da 18 a 442 m Q = Caudal. De 40 a 100 l/min
12	-0 20		$\eta\%$ = Rendimiento de la bomba. Max 64,5 % W/st = Potencia absorbida por etapa. Max 92,00 Condenito màximo de arena. 300 g/m³ S = Nivel minimo (m) Max 1
2	,0		8 ¹ 08
7,	1 20		B MAX: 100 mm
		A	-
	9nZa0'0051–		C MAX: 96 raw.


			ore - Mo						Q=Por	tata - C	apacity	- Debit		
	Power Single phase V230 400 1/se						0	40	50	60	70	80	90	100
Tipo - Type			V2	30	400	I/sec	0,00	0,67	0,83	1,00	1,17	1,33	1,50	1,67
	kW	HP	А	μF	Α	m³/h	0,0	2,4	3,0	3,6	4,2	4,8	5,4	6,0
PR4 N/06	0,55	0,75	5	20	1,3		42	39	37	34	31	27	23	18
PR4 N/08	0,75	1	6,5	30	1,7	1	56	52	49	45	41	36	31	24
PR4 N/13	1,10	1,5	9,6	40	2,2	1	91	85	80	74	67	59	50	39
PR4 N/16	1,50	2	11,8	50	3,1	ĺ	112	104	99	91	83	72	61	48
PR4 N/23	2,20	3	15,2	76	4	H[m]	161	150	142	130	119	104	88	69
PR4 N/31	3,00	4	-	-	5,8]	217	202	191	175	160	140	119	93
PR4 N/42	4,00	5,5	-	-	9,8]	294	273	259	238	217	189	161	126
PR4 N/52	5,50	7,5	-	-	13,5]	364	338	320	294	268	234	199	156
PR4 N/68	7,50	10	-	-	17,5]	476	442	419	385	351	306	260	204


00	1	Dimensioni di ingombro e pesi Overall dimensions and weights														
,0	Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg							
8	PR4 N/06	630	610	293	337	317	8	8	3,3							
4	PR4 N/08	699	674	337	362	337	10	10	3,8							
9	PR4 N/13	839	809	447	392	362	12	12	5							
8	PR4 N/16	957	927	535	422	392	13	13	5,8							
9	PR4 N/23	1156	1141	689	467	452	15	15	10							
3	PR4 N/31	0	1422	865	0	557	0	19	12,3							
26	PR4 N/42	0	1726	1129	0	597	0	22	15,5							
6	PR4 N/52	0	2047	1349	0	698	0	27	18,5							
)4	PR4 N/68	0	2541	1723	0	818	0	32	23,2							

ON 17-16 FIXE TYPE PR 5 TYPE PR 10 14/6 FIX 12 TYPE PR 16

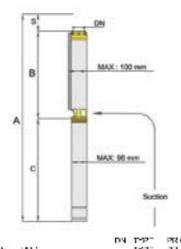
POMPE DE FORAGE

FI-4 PR6 N(4")

			ore - Mo teristich						Q=Por	tata - C	apacity	- Debit		
	Pov	vor		Fase phase	٧	I/min	0	40	60	80	100	120	140	160
Tipo - Type	FOV	vei	V2	•	400	l/sec	0,00	0,67	1,00	1,33	1,67	2,00	2,33	2,67
	kW	HP	А	μF	Α	m³/h	0,0	2,4	3,6	4,8	6,0	7,2	8,4	9,6
PR6 N/04	0,55	0,75	5	20	1,7		27	24	23	22	19	17	13	10
PR6 N/06	0,75	1	6,5	30	2,2	ĺ	41	36	35	33	29	26	20	15
PR6 N/09	1,10	1,5	9,6	40	3,2	ĺ	61	54	52	50	43	38	29	23
PR6 N/13	1,50	2	11,8	50	4	I	88	78	75	72	62	55	42	33
PR6 N/17	2,20	3	15,2	76	5,9	H[m]	115	102	98	94	81	72	55	43
PR6 N/23	3,00	4	-	-	7,8	I	155	138	132	127	109	98	75	58
PR6 N/31	4,00	5,5	-	-	9,8]	209	186	178	171	147	132	101	78
PR6 N/42	5,50	7,5	-	-	13,5	I	284	252	242	231	200	179	137	105
PR6 N/56	7,50	10	-	-	17,5		378	336	322	308	266	238	182	140

160	1			_	ombro s and				
2,67 9,6	Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg
10	PR6 N/04	618	598	281	337	317	8	8	3
15	PR6 N/06	703	678	341	362	337	10	10	3,5
23	PR6 N/09	823	793	431	392	362	12	12	4,5
33	PR6 N/13	995	965	573	422	392	13	13	6
43	PR6 N/17	1160	1145	693	467	452	15	15	7,5
58	PR6 N/23	0	1430	873	0	557	0	19	8,5
78	PR6 N/31	0	1732	1135	0	597	0	22	11
105	PR6 N/42	0	2185	1487	0	698	0	27	15,5
140	PR6 N/56	0	2747	1929	0	818	0	32	20

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

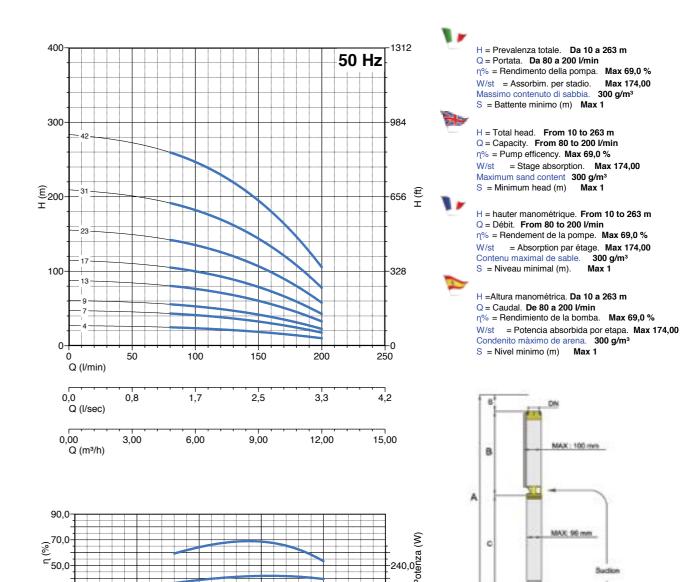

H = Prevalenza totale. Da 10 a 336 m Q = Portata. Da 40 a 160 l/min $\eta\%$ = Rendimento della pompa. Max 68,0 % W/st = Assorbim. per stadio. Max 118,00 Massimo contenuto di sabbia. 300 g/m³ S = Battente minimo (m) Max 1

H = Total head. From 10 to 336 m Q = Capacity. From 40 to 160 l/min η% = Pump efficency. Max 68,0 % W/st = Stage absorption. Max 118,00 Maximum sand content 300 g/m³ S = Minimum head (m) Max 1

H = hauter manométrique. From 10 to 336 m Q = Débit. From 40 to 160 l/min $\eta\%$ = Rendement de la pompe. Max 68,0 % W/st = Absorption par étage. Max 118,00 Contenu maximal de sable. 300 g/m³ S = Niveau minimal (m). Max 1

H =Altura manométrica. Da 10 a 336 m Q = Caudal. De 40 a 160 l/min η% = Rendimiento de la bomba. Max 68,0 % W/st = Potencia absorbida por etapa. Max 118,00 Condenito màximo de arena. 300 g/m³

S = Nivel minimo (m) Max 1



		0.9	T-P-	PR 6
D4 : 1-12.			TYPE	28.7
711	PRZ - may cas		TYPE	23 D
TYPE	25.3		TYPE	23 12 12 SW
TYPE	23.4			23.15

POMPE DE FORAGE

FI-4 PR8 N (4")

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

-80,0

DN:TYPE PRO

1991 182 - 1994 945 1795 1993 - 1994 945 1795 1994

250,0

			ore - Mo teristich						Q=Por	tata - C	apacity	- Debit		
	Power Single phase V 1/mi									120	140	160	180	20
Tipo - Type	100	VCI		30	400	l/sec	0,00	1,33	1,67	2,00	2,33	2,67	3,00	3,3
	kW	HP	Α	μF	Α	m³/h	0,0	4,8	6,0	7,2	8,4	9,6	10,8	12,
PR8 N/04	0,75	1	6,5	30	2,2		27	25	23	22	20	17	14	10
PR8 N/07	1,10	1,5	9,6	40	3,1	1	47	44	40	39	35	30	25	18
PR8 N/09	1,50	2	11,8	50	4]	61	56	52	50	45	38	32	23
PR8 N/13	2,20	3	15,2	76	5,8	H[m]	88	81	75	72	65	55	46	33
PR8 N/17	3,00	4	-	-	7,5	1	115	106	98	94	85	72	60	43
PR8 N/23	4,00	5,5	-	-	9.8]	155	144	132	127	115	98	81	58
PR8 N/31	5,50	7,5	-	-	13.5]	209	194	178	171	155	132	109	78
PR8 N/42	7,50	10	-	-	17.5]	284	263	242	231	210	179	147	10

150,0

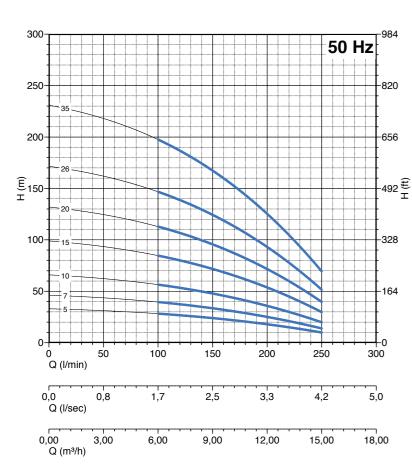
200,0

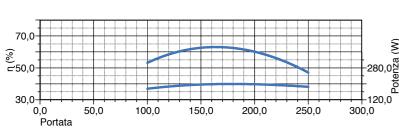
50,0

0,0

Portata

$\frac{1}{2}$	Dimensioni di ingombro e pesi Overall dimensions and weights														
	Tipo - Type Mono Tri Mono Tri Mono Tri														
1	PR8 N/04 643 618 281 362 337 10 10 3														
71	PR8 N/07	763	733	371	392	362	12	12	4						
7	PR8 N/09	853	823	431	422	392	13	13	4,5						
7	PR8 N/13	1040	1025	573	467	452	15	15	6						
1	PR8 N/17	0	1250	693	0	557	0	19	7,5						
7	PR8 N/23	0	1470	873	0	597	0	22	8,5						
	PR8 N/31 0 1833 1135 0 698 0 27 11														
1	PR8 N/42	0	2305	1487	0	818	0	32	15						


0179L PRK 179E PAR 179E PARE = 70AS 179E PRES 179E PRES


industries techniques | tecindus@orange.fr / TEL: 03.22.712.712

POMPE DE FORAGE

FI-4 PR10 N(4")

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

H = Prevalenza totale. Da 10 a 196 m

η% = Rendimento della pompa. Max 63,0 %

W/st = Assorbim. per stadio. Max 200,00

Massimo contenuto di sabbia. 300 g/m³

Q = Portata. Da 100 a 250 l/min

S = Battente minimo (m) Max 1

H = Total head. From 10 to 196 m

Q = Capacity. From 100 to 250 I/min

			ore - Mo teristich						Q=Por	tata - C	apacity	- Debit		
	Pov	vor		Fase phase	٧	I/min	0	100	125	150	175	200	225	250
Tipo - Type	FOV	vei		30	400	l/sec	0,00	1,67	2,08	2,50	2,92	3,33	3,75	4,17
	kW	HP	Α	μF	А	m³/h	0,0	6,0	7,5	9,0	10,5	12,0	13,5	15,0
PR10 N/05	1,10	1,5	9,6	40	3,1		33	28	27	24	21	18	14	10
PR10 N/07	1,50	2	11,8	50	4		46	39	37	34	29	25	20	14
PR10 N/10	2,20	3	15,2	76	5,8		66	56	53	48	42	36	28	20
PR10 N/15	3,00	4	-	-	7,5	H[m]	99	84	80	72	63	54	42	30
PR10 N/20	4,00	5,5	-	-	9,8		132	112	106	96	84	72	56	40
PR10 N/26	5,50	7,5	-		13,5]	172	146	138	125	109	94	73	52
PR10 N/35	7,50	10		-	17,5		231	196	186	168	147	126	98	70

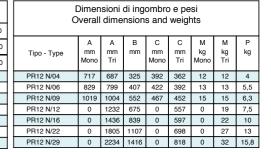
0	Dimensioni di ingombro e pesi Overall dimensions and weights										
7	Tipo - Type	A mm	A mm	B mm	C mm	C mm	M kg	M kg	P kg		
0		Mono	Tri		Mono	Tri	Mono	Tri			
	PR10 N/05	758	728	366	392	362	12	12	4,5		
П	PR10 N/07	870	840	448	422	392	13	13	5,4		
	PR10 N/10	1060	1045	593	467	452	15	15	6,5		
П	PR10 N/15	0	1355	798	0	557	0	19	7,6		
	PR10 N/20	0	1622	1025	0	597	0	22	11,5		
	PR10 N/26	0	1969	1271	0	698	0	27	13,7		
1	PR10 N/35	0	2480	1662	0	818	0	32	17,8		

1114 688

PR 1 PR 2 PR 3 PR 4

1797 93.5 1797 93.5 1797 93.5 1797 93.5 1797 93.5

DM TYPE


POMPE DE FORAGE

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

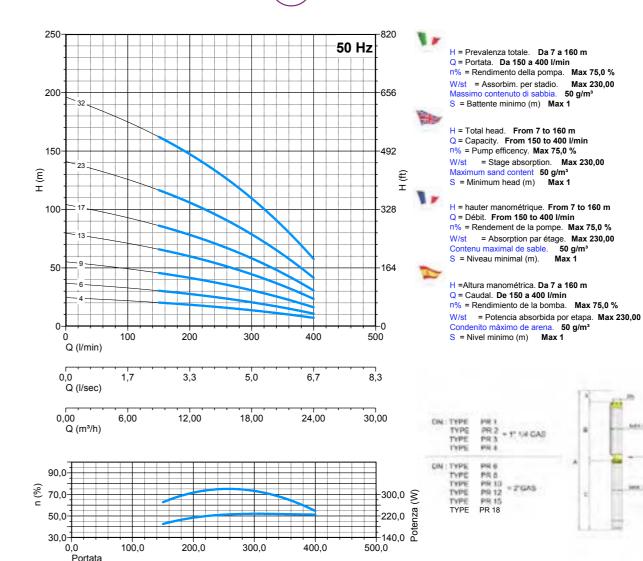
H = Prevalenza totale. Da 10 a 152 m 50 Hz Q = Portata. **Da 150 a 300 l/min** $\eta\%$ = Rendimento della pompa. Max 60,0 % W/st = Assorbim. per stadio. Max 270,00 Massimo contenuto di sabbia. 300 g/m³ S = Battente minimo (m) Max 1 492 H = Total head. From 10 to 152 m Q = Capacity. From 150 to 300 I/min $\eta\%$ = Pump efficency. **Max 60,0** % W/st = Stage absorption. Max 270,00 Maximum sand content 300 g/m³ S = Minimum head (m) Max 1 <u>E</u>100 -328 € I H = hauter manométrique. From 10 to 152 m Q = Débit. From 150 to 300 l/min η% = Rendement de la pompe. Max 60,0 % W/st = Absorption par étage. Max 270,00 Contenu maximal de sable. 300 g/m³ S = Niveau minimal (m). Max 1 H =Altura manométrica. Da 10 a 152 m Q = Caudal. **De 150 a 300 l/min** η% = Rendimiento de la bomba. Max 60,0 % W/st = Potencia absorbida por etapa. Max 270,00 Condenito màximo de arena. 300 g/m3 S = Nivel minimo (m) Max 1 100 200 300 400 Q (I/min) 0,0 1,7 3,3 5,0 6,7 Q (I/sec) 0,00 6,00 12,00 18,00 24,00 MAX: 100 mm Q (m³/h) MAX: 96 mm 340,0⁸ <u>_</u>50,0 30,0 -180,0 100,0 200,0 300,0 400,0 0,0 ON: 14% P48 17% P48 17% P4 10 17% P4 10 17% P8 12 17% P5 10 Portata DN:TYPE PRO TYPE 782 = 1114 G45 143 = 1114 G45 154

	Motore - Motor - Moteur Caratteristiche a 2900 rpm								Q=Por	tata - C	apacity	- Debit		
	Box	Power		Fase phase	V	I/min	0	150	175	200	225	250	275	300
Tipo - Type	FOV	vei		30	400	l/sec	0,00	2,50	2,92	3,33	3,75	4,17	4,58	5,00
	kW	HP	А	μF	Α	m³/h	0,0	9,0	10,5	12,0	13,5	15,0	16,5	18,0
PR12 N/04	1,10	1,5	9,6	40	3,1		25	21	20	18	17	15	12	10
PR12 N/06	1,50	2	11,8	50	4]	38	32	30	27	26	23	18	15
PR12 N/09	2,20	3	15,2	76	5,8	1	56	47	45	41	38	34	27	23
PR12 N/12	3,00	4	-	-	7,5	H[m]	75	63	60	54	51	45	36	30
PR12 N/16	4,00	5,5	-	-	9,8]	100	84	80	72	68	60	48	40
PR12 N/22	5,50	7,5	-	-	13,5		138	116	110	99	94	83	66	55
PR12 N/29	7,50	10	-	-	17,5	1	181	152	145	131	123	109	87	73

FI-4 PR18N 4"(100 mm)

MADE IN ITALY

Elettropompe sommerse semiassiali Semi-axial electric submersible pumps Electropompes immergèes semi-axiales



SEMI-AXIAL IMPELLER AND DIFFUSER

FI-4 PR18 N (4")

			ore - Mo teristich					Q=	Portata	- Capa	Capacity - Debit				
	Des	Power		_		Fase	V	l/min	0	150	200	250	300	350	400
Tipo - Type	Pov	ver	Single V2	phase 30	400	l/sec	0,00	2,50	3,33	4,17	5,00	5,83	6,67		
	kW	HP	А	⊠F	Α	m³/h	0,0	9,0	12,0	15,0	18,0	21,0	24,0		
PR18 N/04	1,10	1,5	9,6	40	3,1		25	20	19	17	14	10	7		
PR18 N/06	1,50	2	11,8	50	4		37	30	28	25	21	15	11		
PR18 N/09	2,20	3	15,2	78	5,8	[55	45	42	37	31	23	17		
PR18 N/13	3,00	4	-	-	7,5	H[m]	80	65	60	54	44	33	24		
PR18 N/17	4,00	5,5	-	-	9,8]	104	85	79	70	58	44	31		
PR18 N/23	5,50	7,5	-	-	13,5]	141	115	107	95	79	59	43		
PR18 N/32	7,50	10	-	-	17,5]	196	160	148	132	109	82	59		

	ı	Dimensioni di ingombro e pesi Overall dimensions and weights									
1	Tipo - Type	A mm Mono	A mm Tri	B mm	C mm Mono	C mm Tri	M kg Mono	M kg Tri	P kg		
1	PR18 N/04	895	865	503	392	362	12	12	5		
1	PR18 N/06	1075	1045	653	422	392	13	13	6		
	PR18 N/09	1345	1330	878	467	452	15	15	9		
1	PR18 N/13	0	1735	1178	0	557	0	19	13		
1	PR18 N/17	0	2075	1478	0	597	0	22	17		
1	PR18 N/23	0	2626	1928	0	698	0	27	23		
1	PR18 N/32	0	3421	2603	0	818	0	32	31		

Elettropompe sommerse semiassiali

Semi-axial electric submersible pumps

Electropompes immergèes semi-axiales

ELETTROPOMPE SOMMERSE TIPO 4" SERIE REC 18:

PORTATE FINO A 400 L/MIN PREVALENZE FINO A 123 METRI POTENZE FINO A 7,5 HP (5,5 Kw).

ELECTRIC SUBMERSIBLE PUMPS VERSION 4" SERIE REC 18:

CAPACITY UP TO 400 L/MIN MANOMETRIC HEAD UP TO 123 METERS POWER UP TO 7,5 HP (5,5 Kw).

ELECTROPOMPES IMMERGEES 4" SERIES REC 18:

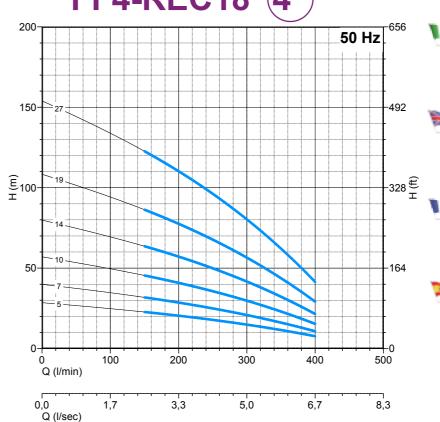
CAPACITE' JUSQU' A' 400 L/MIN HAUTEUR MANOMETRIQUE JUSQU' A' 123 METERS PUISSANCE JUSQU' A' 7,5 HP (5,5 Kw).

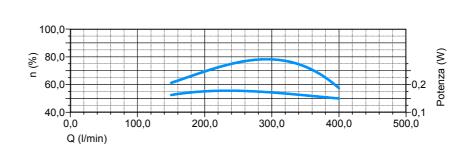
FF4-REC18

4"(100 mm)

Material:

IMPELLER AND DIFFUSER IN CAST IRON


CED Process (Cathode Electro Deposition)



0,00

6,00

FF4-REC18 (4")

18,00

24,00

30,00

12,00

		Motore - Motor - N Caratteristiche a 29						Q=	Portata	ta - Capacity - Debit				
	Pov	vor		Fase	V	I/min	0	150	200	250	300	350	400	
Tipo - Type	POV	vei	Single V2		400	l/sec	0,00	2,50	3,33	4,17	5,00	5,83	6,67	
	kW	HP	Α	⊠F	Α	m³/h	0,0	9,0	12,0	15,0	18,0	21,0	24,0	
REC 18 /05	1,10	1,5	9,6	40	3,2		29	23	21	18	15	12	8	l
REC 18 /07	1,50	2	11,8	50	4		40	32	29	25	20	17	11	ĺ
REC 18 /10	2,20	3	15,2	76	5,8	H[m]	57	46	41	36	29	24	15	
REC 18 /14	3,00	4	-	-	7,5	Ì	80	64	57	50	41	34	21	
REC 18 /19	4,00	5,5	-	-	9,8]	108	86	78	67	55	46	29	
REC 18 /27	5,50	7,5	-	-	13,5]	154	123	111	96	78	65	41	

H = Prevalenza totale. Da 8 a 123 m Q = Portata. Da 150 a 400 l/min

n% = Rendimento della pompa. Max 76,5 %

W/st = Assorbim. per stadio. Max 200,00

Massimo contenuto di sabbia. 50 g/m³ S = Battente minimo (m) Max 1

H = Total head. From 8 to 123 m

Q = Capacity. From 150 to 400 I/min n% = Pump efficency. Max 76,5 %

W/st = Stage absorption. Max 200,00 Maximum sand content 50 g/m³

S = Minimum head (m) Max 1

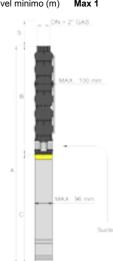
H = hauter manométrique. From 8 to 123 m Q = Débit. From 150 to 400 l/min

n% = Rendement de la pompe. Max 76,5 %

W/st = Absorption par étage. Max 200,00

Contenu maximal de sable. 50 g/m³

S = Niveau minimal (m). Max 1


H =Altura manométrica. Da 8 a 123 m

Q = Caudal. De 150 a 400 l/min

n% = Rendimiento de la bomba. Max 76,5 % W/st = Potencia absorbida por etapa. Max 200,00

Condenito màximo de arena. 50 g/m³

S = Nivel minimo (m) Max 1

	Dimensioni di ingombro e pesi Overall dimensions and weights										
Tipo - Type	Mono Tri Mono Tri Mono Tri										
REC 18 /05	930	900	538	392	362	12	12	7			
REC 18 /07	1106	1076	684	422	392	13	13	10			
REC 18 /10	1370	1355	903	467	452	15	15	13			
REC 18 /14	0	1752	1195	0	557	0	19	17			
REC 18 /19	0	2157	1560	0	597	0	22	23			
REC 18 /27	0	2842	2144	0	698	0	27	31			

FI-M 6" 8" 10"

TYPE:

FIM 34

FIM 44

FIM 54 FIM 66

FIM 78

FIM 90

8" FIM 102 FIM 124

FIM 140

FIM 160

FIM 200

10" FIM 220 FIM 240

PORTATE FINO A 3400 L/MIN PREVALENZE FINO A 470 METRI POTENZE FINO A 125 HP (92 Kw).

ELECTRIC SUBMERSIBLE PUMPS VERSION 6"/8" SERIE 140/180 SX

CAPACITY UP TO 3400 L/MIN MANOMETRIC HEAD UP TO 470 METERS POWER UP TO 125 HP (92 Kw).

ELECTROPOMPES IMMERGEES 6"/8" SERIES 140/180 SX:

CAPACITE' JUSQU' A' 3400 L/MIN HAUTEUR MANOMETRIQUE JUSQU' A' 470 METERS PUISSANCE JUSQU' A' 125 HP (92 Kw).

PUMP COMPLETELY IN STAINLESS STEEL AISI 304

MOTEUR

CE Tolleranze secondo Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906

MOTEURS IMMERGES

>La gamme d'importation amitec prèvoit des moteurs immergés pour des diamètres puits de 4" à 10" avec une puissance variable da 0,33 à 200 HP. De 0,33 a 10 HP les moteurs peuvent etre à bain d'huile ou bien avec résine. De 5,5 à 200 HP les moteurs sont rebabinables à bain d'eau. Ceux là sont de construction particulièrement robuste et capable de fonctionner a long terme sans entretien, ils sont composer par: STATOR >Le bobinage est réalisè en fil en cuivre électrolytique, rêvetu par un matériel hydrofugeant particulier qui à de grandes caractéristiques diélectriques. Température de fonctionnement de l'eau jusqu'à 60°, sous sollicitation, un fil en cuivre revetu de matériel en PTFE permet d'augmenter cette valeur jusqu'à 80°. ROTOR >Arbre en AISI 420 particulièrement robuste, conduit par des coussinets à coquille anti-usure en graphite (ou bronze Bs Bp 15) et supporté par un palier de butée à patins oscillants (type Mitchell) dimensionner pour absorber les plus forts couts axiales de la pompe, avec un facteur de sécurité élevé. LIQUIDE DE REMPLISSAGE Le refroidissement du moteur et la lubrification des supports sont garantis par l'eau limpide mise dans le moteur même. MEMBRANE DE COMPENSATION >positionnée dans la partie inférieur du moteur pour l'équilibrage de la pression intérieur a celui-ci avec celle extérieur dans le puit et pour la compensation de la variation du volume de l'eau, du au réchauffement lors du fonctionnement.

MOTEUR

CE Tolleranze secondo - Tollerance according to - Tolérances selon Tolerancias según norma EN UNI-ISO 9906 - 4" (100 mm)

OVERALL DIMENSIONS OF SUBMERSIBLE MOTOR 4" – 2 POLES – 50-60 Hz DIMENSIONS D'ENCOMBREMENT DES MOTEURS IMMERGES 4" – 2 POLES – 50-60 Hz

4" OIL COOLING SUBMERSIBLE MOTOR (220-230-240V - 50 HZ / 60 HZ)

Motor type	HP	KW	Axial Thrust	Ampere Anox		Cos Ф	Rpm	Cable T	ype
Mot			Axial		An			Nc x sec	L
				1			l	mm2	m
MH 4007 m	0,75	0,55	1500 N	230±5%	4,9	0,99	2865	4x1.5	1
MH 4010 m	1,0	0,75	1500 N	230±5%	6,5	0,98	2870	4x1.5	1
MH 4015 m	1,5	1,1	2500 N	230±5%	9,4	0,99	2880	4x1.5 1	10
MH 4020 m	2,0	1,5	2500 N	230±5%	11,5	0,99	2870	4x1.5 1	40
MH 4030 m	3,0	2,2	2500 N	230±5% 1	4,7	0,99 2	365 4x	.5 1,50	

4" OIL COOLING SUBMERSIBLE MOTOR (380-400-415V - 50 HZ / 60 HZ)

туре			ırust		ere			Cable T	ype
Motor type	HP	KW	Axial Thrust	volt	Ampere	Cos Φ	Rpm	Nc x sec	L
								mm2	m
MH 4010 t	1,0	0,75	1500 N	400±5%	2,2	0,74 2	805 4x1	.5 1	
MH 4015 t	1,5	1,1	2500 N	400±5%	В,О	0,74 2	805 4x1	.5 1,10	
MH 4020 t	2,0	1,5	2500 N	400±5%	4	0,77 2	325 4x	1.5 1,40	
MH 4030 t	3,0	2,2	2500 N	400±5%	5,7	0,78 2	345 4x1	.5 1,50	
MH 4040 t	4,0	3,0	2500 N	400±5%	7,4	0,78 2	350 4x1	.5 2	
MH 4055 t	5,5	4,0	4500 N	400±5%	10	0,82 2	310 4x	.5 2,20	
MH 4075 t	7,5	5,5	4500 N	400±5%	3,5	0,80 2	320 4x1	.5 2,50	
MH 4100 t	10	7,5	4500 N	400±5%	7,3	0,80 2	320 4x	.5 2,80	

TECHNICAL FEATURES OF 4" AMITEC SUBMERSIBLE MOTORS:

• Shaft extension and coupling dimensions according to NEMA standards • Rewindable Stator • Class F insulation • Protection class: IP68 • Internal Fluid according to Standards for oils in contact with foodstuffs • Motor casing and bottom end made in stainless steel AISI 304 • High resistance Brass Upper Bracket • Axial and radial thrust ball bearing • Special cooling fluid for a better lubrificant effect to increase life of moving parts • Sandproof mechanical seal

OPERATING LIMITS:

- Maximum permissible line voltage variation 230V ±5% 400 V ±5% maximum water Temperature 40°C
- motor starting per hour: 30 Axial thrust 4500 N for all the range

VERSIONS.

VERSIONS

 \bullet Single-phase: 0,55 to 2,2 KW : 220-230-240V-50 HZ/60 H Z \bullet Three-phase: 0,75 to 7,5 kw : 380-400-415V - 50 HZ / 60 HZ

POMPE SUR PLATINE ST 72 - ST 120

Stations de transvasement du gasoil à usage privé. Faciles à installer, mobiles et compactes, elles sont utilisables là où il est nécessaire de compléter des réservoirs mobiles ou enterrés par le groupe de distribution.

Elles sont pourvues de soupape de pied avec filtre et support pistolet. Longueur du tuyau de distribution 4 mètres (6 mètres sur demande). Elles peuvent être intégrées dans un coffre métallique pour la protection des composants et livrées avec un filtre séparateur d'eau. Tous les accessoires nécessaires pour compléter l'installation sont également disponibles.

Pompe ST 72 – 230V mono 70l/mn réf: 512F00265F00 Pompe ST 120 – 230V mono 120l/mn réf: 512F00395F00

POMPE VERSION CUBE Cube 56 - 70

Distributeurs à usage privé pour gasoil. Structure robuste prévue pour diverses applications: au mur, sur réservoir citerne, sur fûts, sur piédestal spécial. Pompe à amorçage automatique à ailettes pourvue de bypass, installée sur supports antivibrations. Joint mécanique.

Moteur d'induction pourvu de protection thermique en cas de surchauffe Pistolet automatique avec rac- cord pivotant. Porte-pistolet intégré avec levier de marche/ arrêt pompe. Filtre à grille sur l'aspiration de la pompe.

Compteurs volumétriques à disque oscillant avec indication mécanique.

Cube 56 – 230V mono 56l/mn réf: 512F00575400 Cube 70 – 230V mono 70l/mn réf: 512F00591200

CUBE 70 MC

Pompe avec logiciel de gestion intégré (sur demande)

Conçue sur la base du CUBE standard.

Pourvu de compteurs à engrenages ovales et unité de commande électronique pour la gestion multiutilisateurs et distribution en présélection. Mémoire locale des 255 dernières distributions. Interface avec ordinateur pour l'exportation et l'organisation des données. Possibilité de saisir le code du véhicule et le kilométrage, la date et l'heure de l'approvisionnement.

Des clés magnétiques (Kit clés) sont disponibles pour la reconnaissance des utilisateurs. Sur requête: logiciel donnant la possibilité d'effectuer des impressions détaillées des approvisionnements et de les cumuler par utilisateur.

COMPTEUR MECANIQUE

Compteurs mécaniques. Etudiés pour effectuer une mesure précise de la quantité distribuée (de carburants et lubrifiants) à usage privé. Ils sont fiables, économiques, faciles à installer et ils peuvent être étalonnés sur le lieu de leur installation.

Utilisable même par gravité grâce à la basse résistance au débit.

Mod. K33, indicateur partiel à 3 chiffres (max. 999 litres), total 6 chiffres. Mod. K44, indicateur partiel à 4 chiffres (max. 9999 litres), total 7 chiffres. Mod. Pulser: circuit type "Open collector", fréquence 10 impulsions/litre, alimentation 6-24 Vcc, max. 10 mA.

K33 REF: 512000553000

COMPTEUR MECANIQUE

Compteur numérique à turbine pour fluides à basse viscosité. Facile à installer, en ligne ou à l'extrémité du tuyau de refoulement, il est muni d'un écran multipostions pour en facilité la lecture. C'est un instrument idéal pour la gestion du fluide distribué. Grâce à son corps robuste et au circuit électronique scellé, son utilisation est appropriée à pratiquement n'importe quelle condition. Corps en aluminium (K24) ou en polyamide renforcé (version plastique). Turbine en polypropylène. Type de signal à impulsion : à un canal, reed switch. Circuit électronique avec afficheur LCD : Partiel 5 chiffres de 0.1 à 99999, Total 6 chiffres de 1 à 999999. Répétabilité : 0,2 %.

K24 REF: 512F00408200

PISTOLET Self

Les pistolets manuels sont caractérisés par un excellent fonctionnement donné par la basse résistance au débit et à l'emploi simple et économique. Par leurs caractéristiques, ils peuvent être appliqués à n'importe quel type d'installation de transvasement même à celles ayant un fonctionnement par gravité. Ils sont fournis munis de protection du levier avec blocage de la détente qui peut être enlevée et ils sont disponibles avec différents raccords filetés et avec tuyau à section réduite pour l'essence sans plomb.

Le modèle Self 2000 est encore aujourd'hui le point de référence dans le domaine des pistolets pour le transvasement manuel. Il est pourvu d'une structure robuste en aluminium avec raccord pivotant intégré et soupape en absence du coup de bélier. Il fonctionne avec des pertes de charge réduites et il est indiqué pour des débits allant jusque 120 l/min.

SELF 2000 réf: 512F00641130

PISTOLET A60 - A80 - A120 - A280

Pistolets automatiques.

Ils sont pourvus d'un dispositif d'arrêt automatique du débit quand le réservoir est plein. Munis d'un raccord pivotant, ils répondent aux caractéristiques de sécurité les plus sévères et ont obtenu les certifications nécessaires.

A60 débit 60l/mn réf: 512F00603060 A80 débit 80l/mn réf: 512F00604030 A120 débit 120l/mn réf: 512F00610020 A280 débit 280l/mn réf: 512F13249000

TUYAU POUR HYDROCARBURE

Fléxible de refoulement en caoutchouc équipé de 2 raccords mâle 1" (26x34)

Diamètre int 19mm longueur 4 mètres réf: 512F08976000 Diamètre int 19mm longueur 6 mètres réf: 512F08945000 Diamètre int 25mm longueur 4 mètres réf: 512F08977000 Diamètre int 25mm longueur 6 mètres réf: 512F08858000

Tuyau pour aspiration

Diamètre 25 livrable au mètre réf: 107SPIROIL025

ENROULEUR

Les enrouleurs automatiques pour diesel et huile ont été conçus pour garantir une efficience et une

De plus, la structure robuste garantit d'excellentes performances même dans des conditions de travail difficiles.

Caractéristiques:

- Perte de charge réduite
- Résistance à la corrosion : structure en acier
- Installations simples et polyvalentes grâce au support pivotant et aux bras réglables dans différentes positions.
- Arrêt du tuyau
- Sécurité : protections latérales

Enrouleur équipé de 8m de flexible dn25 male 1" (26x34)

réf:512F00750020

CLAPET Clapet anti-retour laiton fxf 1"(26x34)

CREPINE Crépine mâle 1" (26x34) adaptable sur clapet

réf: 023303006 réf: 023392006

FILTRE Bio-fuel/Fuel/Oil

BIO-FUEL - Filtres du type à cartouche à absorption d'eau. Filtre séparateur d'eau. Le filtre de refoulement est du type à cartouche à absorption d'eau. Ce filtre constitue une importante garantie pour la protection des moteurs qui utilisent le gasoil distribué par la station. La caractéristique de ce genre de filtre est de séparer et

d'absorber l'eau éventuellement présente dans le gasoil pompé. Performances:

Capacité filtrante 30 µm

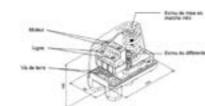
Débit 70 - 150 l/min

Pression d'exercice 3.5 bars Pression d'explosion 10 bars

FUEL AND OIL - Filtre à cartouche. Les filtres en ligne avec cartouche à visser à perdre (SPIN-ON) conviennent pour l'application aussi bien en aspiration qu'en re- foulement sur installations hydrauliques et de lubrification. Ils sont disponibles avec connexions de 3/4" et 1". Performances:

Capacité filtrante 10 µm Pression d'exercice 12 bars max.

CARTOUCHE STANDAR 90Ll/mm réf:512R15415000 TETE SUPPORT DE FILTRE réf: 512R15415000



CONTACTEUR MANOMETRIQUE Type CM, pour eau

Pressostat pour eau pour emploi dans des systèmes d'autoclave L'interrupteur assure automatiquement la marche et l'arrêt de l'électropompe selon les valeurs de pression réglées.

4	4	4
1	1	
 MOTOR	MOTOR	MOTOR

CM12T CM5T 500 V 500 V TENSION NOMINALE COURANT NOMINAL 16 A 16 A PLAGE D'UTILISATION 1 - 5 Bar 3 - 12 Bar REGLAGE D'USINE 1,4 - 2,8 Bar 5 - 7 Bar 0,6 - 2,3 Bar 1,5 - 5 Bar 55°C 55°C

HYDROTECH

Régulateur éléctronique de pression pour éléctropompe monophasée

HYDROTECH est un appareillage qui permet d'automatiser le démarrage et l'arrêt d'une électropompe, avec une hauteur manométrique supérieure à au moins 2 bar, en fonction respectivement de la diminution de la pression (ouverture robinets) et de l'arrêt du flux dans l'installation (fermeture robinets) sur laquelle il est monté. HYDROTECH se charge de l'importante fonction d'arrêt de la pompe en cas de manque d'eau, en la protégeant ainsi des fonctionnements à sec qui l'endommageraient.

À l'aide d'un temporisateur, il peut aussi la faire automatiquement redémarrer pour vérifier la présence éventuelle d'eau (seulement pour les versions munies de réarmement automatique).

La présence du manomètre assure le contrôle de la pression d'intervention et de la pression de l'installation. Il vérifie également la présence de fuites éventuelles dans l'installation elle-même.

....115÷230 VCA 50/60 Hz(Brio Green 230VAC) Alimentation: ... Consommation e attente...... ..<0,25W Courant max.:.... Plage de la pression d'intervention:1÷3,5 bar Pression max. admissible:

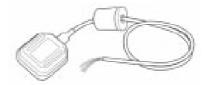
LANCE D'ASPERSION

Lance réglable pour aspersion manuelle (cultures horticoles, nettoyage des légumes, jardins et espaces verts, ferme, grange ...) Lance en alliage d'aluminium anodisé à débit fixe, allie légèreté et simplicité. Elle offre une large plage d'utilisation avec 40L/min à 6 bar. Les différents jets sont réglables par rotation de la gaine de tête (diffusé, écran et jet plein).

- 40L/min à 6 bar · Gaine de tête en caoutchoue lisse
- Raccordement d'entrée 3/4 mâle
- · Différents jets réglables

FLOTTEUR PVC (3 Fils)

De dimensions réduites, il représente la solution la plus économique pour l'automatisation des électropompes et installations hydrauliques.


DESIGNATION	LONGUEUR	ømm
CFO5	5 M	106
CF10	10 M	106
CF15	15 M	106
CF20	20 M	106

CONTREPOIDS

Contrepoids pour flotteur.

Le flotteur fonctionne toujours avec la même longueur de câble même en cas d'eau agitée.

FLOTTEUR ACS (3 Fils)

Flotteur pour l'automatisation des électropompes et installations hydrauliques professionnelles. Entièrement réalisé avec des matières non toxiques, adaptées à un usage alimentaire et destinées à l'utilisation permanente dans l'eau potable, à savoir : aqueducs – fontaines d'eau potable – boissons et produits alimentaires - aquariums – vivariums poissons - piscines.

DESIGNATION	LONGUEUR	TAILLE
CFACS05	5 M	81/131,5
CFACS10	10 M	82/131,5
	-	-

REGULATEUR ORANGE LESTE (3 Fils)

Flotteur de grande précision, utilisé pour la commande d'une pompe de relevage d'eaux chargées. C'est un régulateur lesté qui est suspendu par son cable. Fonctionnement avec deux flotteurs; un niveau haut (Marche) et un niveau bas (Arrêt)

Conditions d'utilisation :

- -Fonctionnement avec deux flotteurs
- -Température maxi 60°C.
- -Protection IP68.
- -Immersion max. 50 m.

DESIGNATION	LONGUEUR	ømm	HAUTEUR
RFL10	10 M	109	206,5
RFL15	15 M	109	206,5
RFL20	20 M	109	206,5

REGULATEUR BLEU LESTE ACS (3 Fils)

C'est un régulateur lesté qui est suspendu par son cable.

Fonctionnement avec deux flotteurs; un niveau haut (Marche) et un niveau bas (Arrêt) Régulateur de niveau à assiette variable avec trois chambres étanches. Entièrement réalisé avec des matières non toxiques, adaptées à un usage alimentaire et destinées à l'utilisation perma- nente dans l'eau potable, à savoir : aqueducs – fontaines d'eau potable – boissons et produits alimentaires - aquariums – vivariums poissons - piscines.

DESIGNATION	LONGUEUR	ømm	HAUTEUR
RFLACS10	10 M	109	206,5
RFLACS20	20 M	109	206,5

PRISE TYPE P

Prise bipolaire + terre 16A, Mâle / Femelle Pour flotteur, permétant d'automatiser une pompe.

ATTACHE CABLE TYPE AC

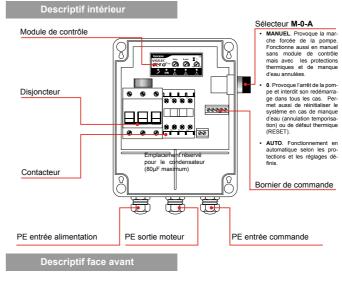
Permet de fixer le flotteur par son câble sur un tuyau ou un autre support.

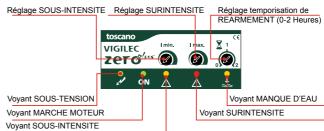
- Support avec vis de fixation
- 2 colliers rislan
- ø 9mm

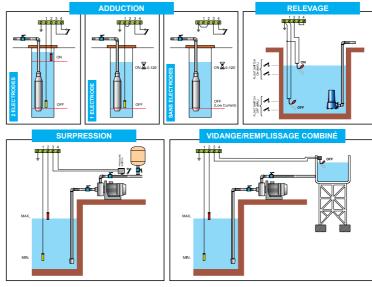
TECNIPROTEC

Coffret de commande et de protection électrique universel. Pour 1 pompe jusqu'à 18A

DESIGNATION	TENSION V	Nrb DE POMPE	INTENSITE MAX
18M	230 V MONO	1	18A
18T	400 V TRI	1	18A




Coffret de commande et de protection électrique de type relevage. Pour 2 pompes jusqu'à 12A. Fonction: Permutation, démarrage en cascade, buzzer, sortie alarme


DESIGNATION	TENSION V	Nrb DE POMPE	INTENSITE MAX
12 BI	BITENSION	2	12A

TECNIPROTEC Déscription du coffret universel

Electrodes de niveau

Les câbles doivent être suffisamment isolés. La longueur maximale des câbles des électrodes est de 200 m et leur section minimale est de 0,5 mm².

section minimale est de 0,5 mm².

Pour le bon fonctionnement du contrôle de niveau, il est primordial QUE LA MISE A LA TERRE SOIT CORRECTEMENT REALISEE. Il est recommandé pour cela de raccorder la terre à un point quelconque de la tuyauterie
ou de la pompe. Lorsqu'il s'agit d'un récipient isolant (fibrociment, fibre de verre ou plastique) il est alors indispensable de tirer une troisième électrode, dite de masse, au fond du récipient.

Temporisation de réarmement

Le coffret attend le retour de l'eau en amont et le voyant orange de manque d'eau clignote pendant toute la durée de la temporisation. Pour annuler la temporisation, réinitialiser le coffret par simple rotation du sélecteur de fonctionnement sur la position "0" puis de nouveau sur "AUTO" (RESET).

Pour annuler le réarmement automatique de la pompe, régler le potentiomètre au minimum en sélectionnant la

valeur o (rearmement manuel).

Mode SANS ELECTRODES: Si lors du redémarrage de la pompe après un premier arrêt pour sous-intensité, l'intensité minimum réglée n'est toujours pas atteinte, l'équipement stoppera alors la pompe et n'effectuera plus aucun redémarrage.

Manque de phase

En cas de manque de phase, le voyant d'ALARME s'allumera soit pour SOUS-INTENSITÉ soit pour SURINTENSITÉ, suivant la phase manquante. L'équipement stoppera alors la pompe et n'effectuera plus aucun redémarrage. De même, lorsqu'une des phases manque au démarrage, le coffret déclenche immédiatement la protection sans attendre le temps d'inhibition fixe de 20 secondes prévu normalement pour la mise en eau de l'installation (impulsion/refoulement).

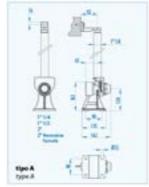
COFFRET D'ALARME

Coffret de détection de niveau haut avec batterie complémentaire, idéal pour avertissement de niveau d'eau trop haut (débordements, etc.) ou présence d'eau dans des endroits sensibles. Fonctionne via détecteur de niveau et 2 électrodes ou flotteur de niveau.

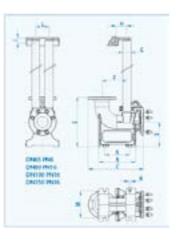
- Boitier plastique IP56.
- Alimentation 230V AC.
- Batterie rechargeable, autonomie 1 mois (6 heures en mode alarme).
- Voyants de présence tension et d'alarme.
- Buzzer 90dB.
- Bouton de test.
- Bouton de reset (arrête l'alarme).
- Contact de sortie d'alarme.

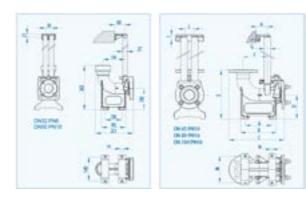
Almentation	230V AC
Puissance absorbée	2VA
Accumulateur	NHMH IEC 6F 22: 9V 170mAh
Pouvair de coupure	5A 30V DC 5A 250V AG
Torsion our électrodes / flotieur	912V DG
Russer	954R
Capacité de serrage	3,4mm ¹
Dimensions/Polds/IP/Temoérature	180 (hauteur) x 110 (largeur) x 75 (profondeur) / 475g / IP56 / -103+553 C

COFFRET DE REMPLISSAGE POUR ELECTROVANNE


Relais de contrôle de niveaux de liquides conduc- teurs. Régulation de remplissage d'un réservoir OU de vidange d'un puits par 2 électrodes de niveau (haut/bas). Encliquetable sur rail DIN 35 mm. LED de visualisation de l'état du relais de sortie. Sensibi- lité réglable de 3 k Ω à 60 k Ω . Alimentation à 230 Vac (400 Vac sur demande).

Signalisation	TENSION at RELAIS
Yension d'alimentation	230 Voa 50 Hz (pour d'autres tensions, nous consulter)
Puissance absorbée	2 VA
Variations de tension admissibles	+10% -20%
Plage de température	-10° +60° C
Sensibilité des électrodes	Réglable de 3 à 60 Kohm
Tension des électrodes	12V AC 50 Hz
Courant des électrodes	1,2 mA maxi en court-circuit
Capacité de raccordement	2 x 2.5 mm*
Contacts de travail	2 A - 290V AC
Fixation	RailDN
Poids	85 g


PIED D'ASSISE TYPE A,B



PIED D'ASSISE TYPE C

PIED D'ASSISE TYPE D

techniques industries tecindus@orange.fr/TEL: 03.22.712.712

POMPE A MAIN

Pompe rotative aluminium, 50L/min, livrée avec bonde et tube d'apiration

POMPE A BRAS

Pompe à bras en fonte, sur bride ronde.

PIED POUR POMPE A BRAS

En fonte, Hauteur 675mm

POINTE DE FORAGE

Filtre incorporé DIAMETRE: 1"1/4 - (33X42) - 6500081090 DIAMETRE: 2"- (50X60) - 6500081092

TUBE ALLONGE

Spéciale forage galvanisé LONG: 1m / MXM: 1"1/4 - (33X42) - 6500749468 LONG: 1m / MXM: 2"- (50X60) - 6500749496

MANCHON DE JONCTIONNEMENT

fem/fem: 1"1/4 - (33X42) - REF: 709100033 fem/fem: 2"- (50X60) - REF: 709100050

PATE DE MONTAGE

Pôt de 500g

FILASSE

Poupée de 200g

CLAPET ANTI-RETOUR

Montage toutes positions corps laiton fem/fem: 1"1/4 - (33X42) - 023303007 fem/fem: 2"- (50X60) - 023303009

FILTRE Y

fem/fem: 1"1/4 - (33X42) - 023202007 fem/fem: 2"- (50X60) - 023202009

TE LAITON

fem: 1"1/4 - (33X42) - ref: 704130033 fem: 2"- (50X60) - ref: 704130050

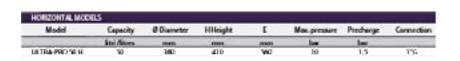
MAMELON LAITON MAL

1" 1/4 - (33X42) - ref: 704280033 2" - (50X60) - ref: 70428050

COUDE LAITON FEM/FEM

1" 1/4 - (33X42) - ref: 704090033 2" - (50X60) - ref: 704890050

COUDE LAITON MALE/FEM


1" 1/4 - (33X42) - ref: 704092033 2" - (50X60) - ref: 704892050

RESERVOIR COMPOSITE

RESERVOIR A VESSIE Horizontal

RESERVOIR A VESSIE Vertical

Model	Capacity	Ø Diameter	Hilleight		Mox.pressure	Precharge	Connection
	Stri/Sitres	men	rives	rewes	lier	le:	- Contract
V MCORNARIU	24	270	485		16	1,5	116
UCTRIA-MRO 100 V	100	430	910	150	10	1,5	1%
ULTRIA-PRO 200 V	366	550	1235	210	16	5,5	11/2%
U DRIA-PRO 100 V	166	630	7365	586	10	1,5	11/2%
ULTRA-PRO 500 V	500	750	1560	146	10	3.5	11/2%

RESERVOIR GALVA Electropompes auto-amorçantes avec pré-filtre

VOTES		

TUYAUTERIE

TECNICLAIR

CARACTERISTIQUES

Tuyau souple polyvalent de qualité alimentaire en PVC renforcé sans phtalate par tresse textile de haute té-

Passage de p roduits ou l iquides alimentaires s uivant simulant A, B, C et D 1 (agréé p ar l e laboratoire d'essai IANESCO RE-12/04407 et RE-13/02867)

Alimentation de machines et outillages à air comprimé - Passage de gaz industriels, de produits chimiques légers et refoulement d'eau - Formellement déconseillé pour hydrocarbures et dérivés Formellement interdit pour le transport de produits gras (huiles végétales)

	e led	Tolkrance (mm)	Poids (gm)	contras	A 20YO (DAY)	A 2010 Dari
4	8 . 14	415	130	60	20	-80
3	79 X 78	11.63	100	75	20	00
4	12 x 10	+15	216	80	20	60
3	12 8 20	24.03	229	90	20	90
7	15 x 23	+15	306	100	20	80
3	10 1 24	9-61	yu	710	20	80
7	19 x 27	41.0	365	125	20	80
9	20 1 20	****	372	130	20	100
H	25 x 34	44.0.0	524	180	16	80

TECNIFLEX JAUNE

CARACTERISTIQUES

Renforcement spécial ATH. (Anti Torsion Hose) supprimant le phénomène de vrillage sous pression -Revêtement en PVC souple anti U.V. - 25 bar de pression test

Tuyau multi usages pour amenées d'eau et l'arrosage domestique et industriel

COLORIS: JAUNE					
a int w a ext (mm)	foliprance (mm)	Preds (g/m)	#3 # 2370 (bar)		
15 x 20.5	₩-0.6	192	12		
19 × 25,5	-A.0.8	276	12		
25 × 32,5	uJ-0,8	400	0		
50 × 50	1/ 1/0 ·	G00	0		
32 x 42	or 1,0	715			
35 X 45	+1,0	(51	8		
40 × 51	45.1,5	930	8.		
60 × 63	od-1,6	1296			

TECNIEAU

CARACTERISTIQUES

Tuyau 5 couches - Qualité standard - Tube intérieur lisse en PVC vierge - Couche intermédiaire en PVC 100% recyclé - Renforcement spécial A.T.H. (Anti Torsion Hose) supprimant le phénomène de vrillage sous pression - Armature en fibre polyester haute ténacité - Revêtement en PVC souple anti U.V. - 20 bar de pression test - Garantie : 12 ans

Tuyau multi usages pour amenées d'eau et arrosage

	COLORIS: JA	AUNE	8
ø int x ø ext (mm)	Tolérance (mm)	Poids (g/m)	PS à 23°C (bar)
15 x 19,5	+/- 0,8	170	10
19 x 24,5	+/- 0,8	236	10
25 x 31	+/- 0,8	355	8

TECNITRESS 40

CARACTERISTIQUES

Tuyau souple en PVC

Renforcement par tresse textile de haute ténacité

UTILISATION

Air comprimé

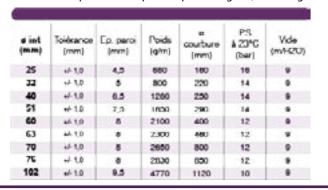
Pulvérisation agricole

Equipement de postes de lavage à l'eau froide

8		COL	ORIS BLEI	J.	100
s int n # ext (mm)	iolòrance (mm)	Poids (q/m)	oourbure (mm)	PS a 23°C (bar)	PINF a Z3°C (bar)
0 x 14,5	+/- 0,5	153	00	40	125
9 x 16	+4-0,6	174	70	40	135
10 x 17	44-0,5	187	75	40	125
12 a 20	44-0.5	243	100	40	120
16 x 24	+/-0,5	321	145	40	105
19 x 28	4,0 44	420	155	40	106
25 x 35	46.1,0	585	280	40	105

TECNIFLEX PRESS

CARACTERISTIQUES

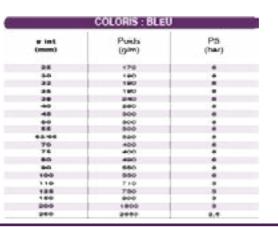

Tuyau en PVC plastifié sans phtalate renforcé d'une spirale en acier et d'une tresse textile de haute

Passage de produits ou liquides alimentaires suivant simulant A, B, C et D1 (agréé par le laboratoire d'essai IANESCO RE-12/04407 et RE-13/02867)

UTILISATION

Aspiration et refoulement basses pressions, pour travaux publics, agriculture, tonnes à lisier, pompage, vidange, rabattage de nappe, etc...

Formellement interdit pour le transport de produits gras (huiles végétales)



TECNIFLAT 7

CARACTERISTIQUES

Tuyau enroulable à plat en PVC plastifié renforcé d'une tresse polyester Très léger et maniable Résistance aux produits chimiques et aux agents atmosphériques UTILISATION

Arrosage et refoulement d'eau, recommandé en circuit ouvert

TECNIFLAT HD

CARACTERISTIQUES

Tuyau enroulable à plat en PVC plastifié renforcé d'une tresse polyester Fabrication double couche (intérieur noir, extérieur bleu)

Résistance aux produits chimiques et aux agents atmosphériques

UTILISATION

Arrosage et refoulement d'eau à pression moyenne

a feet	Ponts	145	25.50
(mem)	(g/m)	(her)	(ber)
**	890	10	90
**	and .	79	90
**	310	10	90
**	***	100	80
	300	10	90
22	223	79	90
46	490	10	94
**	410	**	**
86	640	0.0	24
**	410	**	**
74	776		41
**	1600		- 5
40	810	7	81
**	#95.		**
100	1000		16
1 849	1100		18
126	1966		15

TECNITEX

Tuyau enroulable à plat noir ou rouge suivant diamètre Construction « monobloc » Gaine: tissage chaîne en trame en fils synthétiques Revêtement interne: élastomère nitrile Revêtement externe: élastomère nitrile avec rainures extérieures anti-abrasion Résistance à la chaleur (jusqu'à +150°C)

Résistance aux contacts accidentels de masses chaudes

Résistance aux conditions atmosphériques

Protégé contre l'ozone et les U.V.

Résistance aux agents chimiques et insensible aux hydrocarbures Résistance à l'abrasion avec renforcement par les rainures extérieures 10 bar à 100°C tous les ø en refoulement Conforme aux normes NFS : 61 - 112 et 61 - 116

UTILISATION

Refoulement eau, eaux chargées, eaux résiduelles ou eau chaude

Agriculture: irrigation, épandage, distribution d'engrais...

Industrie: pétrochimie, BTP, mines, carrières, chantiers navals...

Fourreau de protection : sangle d'arrimage, élingue de levage, flexibles hydrauliques...

p int mm	Posts (glas)	(me)	PLNE (twi	fractori é a regrund
120	180	1,0	79	1.1
'25	200	7,0	ren.	1,1
'12	230	- 2	00	1.7
125	280	2	90	1.8
139	300	2	55	2.3
142	320	-21	80	3.1
'45	300	2.2	50	2,1
52	420	2,2	80	3,8
155	460	2,2	50	5,9
164	540	2,4	100	1,4
'79	800	2,8	50	6,6
75	790	2,6	80	6.6
180	850	2.7	50	0,4
20	9000	2,7	180	8,8
182	1000	2,0	50	12,4
*110	1100	- 3	46	12,6
1120	1306	3	46	12,1
'127	1,400		.40	216.
152	1700	3	40	10,9
1363	2798	3/2	300	26,0

COLOGIS - NOIS OU SOUGE SHIVANT DIAMETRI

TUYAUTERIE

TECNISPIR

CARACTERISTIQUES

Tuyau en PVC sans phtalate renforcé d'une spirale en PVC rigide antichoc. Surface intérieure lisse en cristal transparent. Coefficient de sécurité à 20°C : 3 fois la pression de service

UTILISATION

Aspiration et refoulement de liquides alimentaires suivant simulant A, B, C et D1 (agréé par le laboratoire d'essai IANESCO Procès Verbal RE-12/04407 et RE-13/02867). Formellement interdit pour le transport de produits gras (huiles végétales)

TECNISPIR OIL

CARACTERISTIQUES

Tuyau en PVC Nitrile spécial hydrocarbure renforcé d'une spirale en PVC rigide antichoc Surfaces intérieure et extérieure lisses

Grande maniabilité caractérisée par sa souplesse même à basse température Coefficient de sécurité à 20°C: 3 fois la pression service

UTILISATION

Aspiration et refoulement d'hydrocarbures Formellement déconseillé pour les installations fixes

a int immi	(mm)	alp passu (mm)	Private (g/m)	coursure (mm)	arth autoric (ber)	(m/160)
20	m-10	2,6	260	900		7
29	46.14	7.0	330	136		
50	45.10	- 3	370	140	4	7.
3.2	45.16	3.1	400	180		. 7
35	+6-1.0	3.2	400	165	4	7
400	45.10	20.00	MO	1001	*	

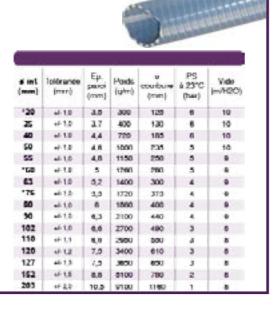
TECNISPIR M

CARACTERISTIQUES

Tuyau en PVC plastifié super élastique renforcé d'une spirale en PVC rigide antichoc Surface intérieure lisse

Grande maniabilité même à basse température

Coefficient de sécurité à 20°C : 3 fois la pression de service


UTILISATION

Aspiration et refoulement d'eaux usées

Produits pulvérulents et de faible granulométrie

Particulièrement adapté pour l'emploi de véhicule de vidange

Tonnes à lisier

TECNIAIR 15

CARACTERISTIQUES Tube: SBR/NR noir

Renforcement : Trame textile Revêtement : SBR/NR noir Ne résiste pas aux hydrocarbures

UTILISATION

Refoulement d'air pour industrie et travaux publics

COLORIS : NOIR					
sint x # ext (mm)	Poids (g/m)	exurbuni (mm)	PS (bar)	PLNE (ber)	
6 x 13	160	120	15	45	
8 x 15	1260	160	10	45	
10 x 17	220	200	15	45	
13 x 21	270	260	15	45	
16 x 23	320	320	10	40	
19 x 28	510	400	10	45	
25 x 34	620	500	15	45	
32 x 43	900	420	10	40	
35 x 47	1000	500	15	45	
50 x 64	1540	700	15	45	
76 x 91	2640	1200	10	40	

CARACTERISTIQUES

Tube: NBR noir antistatique Renforcement: Trame textile Revêtement: CR / SBR noir

Conductibilité électrique : résistance antistatique R < 106 Ohm

UTILISATIO

Refoulement huiles - Gazole (EN590:2004) (sauf GNR) - Essence sans plomb (EN228:2004) - Eau - Air

COLORIS : NOIR						
pint xpext (mm)	Poids (g/m)	courbure (mm)	PS (lar)	Pl NF (lser)		
6 x 14	190	80	20	60		
2 x 16	200	100	20	80		
10 x 18	250	120	20	60		
13 x 21	390	160	250	60		
16 x 25	400	200	20	60		
19 x 29	DOKU	240	20	60		
25 x 36	700	300	20	60		

TECNISPIR 10

CARACTERISTIQUES

Tube : SBR/NBR, noir lisse - Renforcement : Spirale en acier, multiples plis textiles noyés dans la paroi - Extérieur : SBR/EPDM, noir avec empreinte toilée et marquage

UTILISATION

Tuyau d'aspiration e t de refoulement pour eau propre ou eau chargé, f abriqué à partir d'élastomères de haute qualité lui conférant une excellente flexibilité, une longue durée de vie et un poids léger pour une meilleure maniabilité

COLORIS : NOIR						
s int a peat (mm)	Pouce	Prick (g/m)	er courbure (mm)	Vide m/ H2O	PS (bar)	Pi.NF (bar)
25 x 37	. 1	800	300	9	10	30
12 x 44	1 1/4	980	380		10	30
38 x 51	11/2	1200	460		10	30
51 x 65	2	1790	900		10	30
23 x 22		1950	680		10	30
63 x 79	21/2	2100	7963		10	30
70 x 82	100000	2450	840		10	30
75 x 30	. 3	2900	920		10	30
80 x 92	100	3200	1000		10	30
90 x 104		3700	1120	w	10	30
102 x 116	4	4200	1200		10	30
152 : 168	n	77500	1800		10	30
203 x 223	0	15200	3200		10	30

TECNIGAIN M

CARACTERISTIOUES

Gaine flexible en PVC souple renforcée d'une spirale en PVC rigide antichoc Surface intérieure lisse (standard : gris clair - disponible sur demande en gris foncé) UTILISATION

Aération - Ventilation - Dépoussiérage non abrasif - Ecoulement de liquide sans pression

COLORIS : GRIS CLAIR OU GRIS FONCE						
p int (mm)	Tolerance (mm)	(p paro	Poids (ght)	courburs (mm)	Vide (mAGSN	
20	40.10	0.76	125	80		
26	46.18	0.790	190	60		
30	40.10	0.6	190	80		
740	st:1-0	0.8	206	360	4.6	
35	46 T.B	0.8	225	90	4.5	
***	98.14	0.00	EPS.	1965		
45	10.18	0.85	350	120	4	
94	36.4.0	0.00	440	histo		
60	46.52	0.86	600	140	4	
62	10.14	0.0	100	160		
70	46.1.0	0.0	690	170	4	
.76	46.1.0	0.9	660	190		
.00	40.10	0.96	740	290		
00	46.1.0	0.96	860	260		
100	46 T.D		870	260		
229	963.3	1.	1000	900		
120	46.18	1	1150	820		
122	st-1.5	1.0	1040	300		
140	10-14	1.1	1440	360	2.5	
100	38: 1.8: ·	7.7	1.700	1880	3.0	
660	45.1.8	1,18	1900	400	3.6	
190	10.44	7,16	2200	980	3.	
200	44.8	1.2	2600	760	2.6	

TECNIGAIN F

CARACTERISTIQUES

Gaine flexible e n PVC s ouple renforcée d'une spire en f il d'acier h aute résistance a vec revêtement

Mise à la terre par connexion des extrémités du fil d'acier

UTILISATION

Par sa grande flexibilité, cette gaine est spécialement adaptée pour l'aération des locaux, ateliers, ventilation de machines, extraction de fumées, copeaux, air chargé, etc...

COLORES CRES					
	Ex pare (me)	II d'appe (me)	Produ (g/m)	I sections (mm)	Trib (HI-O'D)
36	4.0	1.0	254	- 60	4
26	4.8	1.8	2709	77	
46	0,8	1,8	306	10	
45	9.8	1.81	325	200	
10	0,9	1.8	386	100	2
98	5.5	1,9	306	140	3:
80	9,5	3,8	406	100	3
80	4.4	1,8	506	100	-30
79	0,8	1,6	826	146	3
76	4.4	1.8	339	120	2.
80	5.5	1,8	630	160	2
24	9.8	1.8	706	100	1
100	0.0	2.2	740	2100	2
176	4.8	3.2	796	206	- 2
128	4,9	2.2	850	340	2
121	4,4	2.2	Anni-	256	3
136	8,8	1.2	800	266	1
146	9.8	2.2	910	200	1
158	0,5	1.2	956	300	1
164		7.2	1000	375	1
100	1	2.2	1300	360	1
200		- 22	2000	40	
200	1	2.7	2800	800	1
300		2.7	960	44	4.

TECNIGAIN MPU

CARACTERISTIQUES

Gaine flexible en polyuréthane souple renforcée d'une spirale en PVC rigide antichoc Surface intérieure lisse. Qualité résistant à l'hydrolyse et aux bactéries UTILISATION

 $As piration\ produits\ abrasifs: copeaux,\ poussi\`eres,\ feuilles,\ gazon,\ etc.\ Projection\ produits\ isolants$

TECNISPIR PLI

CARACTERISTIQUES

Tuyau en PVC plastifié renforcé d'une spirale en PVC rigide antichoc grise.

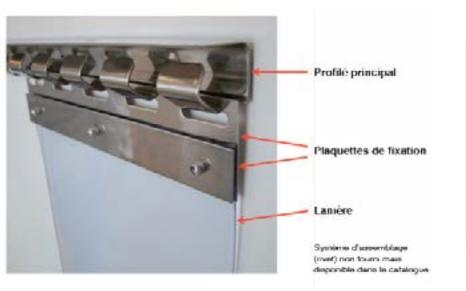
Grande maniabilité caractérisée par sa souplesse même à basse température Coefficient de sécurité à 20°C : 3 fois la pression de service

UTILISATION

Aspiration et refoulement de matériaux abrasifs et granuleux

s int	Tolorance (mm)	Ep parei (mm)	Poids (g/m)	courture (mm)	123°C (bar)	Vide (m/LC93)
40	4F 1.0	4	610	190	4	7
50,8	+7.10	4,5	740	220	4	- 1
60	4F 1.0	4.7	870	280	4	.7
80	+6-1.0	0.0	1900	,990	3	7

TUYAU ASPIRATEUR



techniq	ues	ni F.	dustri	65
tecindus@o				

NOTES

LANIERES & PANNEAUX SOUPLES

Désignation	Domainee d'application	Plago de largeur (mm)	Epalaseur (mm)	Dureté (an A)	Plage de température (°C)	Риды
LANIERE STANDARD CRISTAL	(II)	190 - 400	285	75	-20 A +50°C	66
LANIERE GRAND FROID - POLAR	gill makes	100 - 300	243	65	-40 A +20°C	66
LANIERE COULEUR	d	200 - 300	283	75	-20 à +50°C	60
LANERE M1	gil	200 - 300	283	75	-20 à +50°C	67
LANIERE AS		200 300	243		20 à +50°C	67
SYSTEME DE SUSPENSION	(i)	200 à 1000	95	-		66
PANNEAUX SOUPLES	d	1000 à 1500	217	75	-20 à +50°C	68

LANIERES SOUPLES PVC

CARACTERISTIQUES

Nécessaire pour protéger un bâtiment en doublage de portes extérieures ou en cloison intérieure tout en conservant un accès facile aux piétons et aux chariots élévateurs. Leurs bords arrondis évitent tous risques de coupures, elles sont résistantes aux U.V. et gardent leur souplesse à basses températures

Confection de portes souples pour bâtiments, séparations dans un atelier, protections de machines, protections contre la poussière, entretien des portes existantes. Entrepôts et véhicules frigorifiques, chambres froides

Type	Goloria	Durete	Temperature
Standard	Cristal blou transparent	75 ShA	-39°C +59°C
Polar - grand froid	Cristal wert transparent	65 ShA	-40°C +30°C
Lanière de couleur	Rouge translucide Bronze translucide Vert translucide	75 ShA	-20°C +50°C

	Largeur x épaisseur (mm)	Posts (hg/m)
	190 × 2	0,43
	200 × 2	0.48
450	200 x 3	0.74
- 66	300 × 2	9.74
	300 × 3	1.10
and the same of	300 x 4	1.45
	300 x 5	1.85
N 42-16-16-16	380 x 4	1.80
	400 x 3	1.50
	400 x 4	2.00
OCAR - GRAND FR	OID-COLORIS CRISTAL VENT T	RANGFARE
	Largeur x épaisseur	Pods
	(mm)	(hg/m)
	(mm) 199 x Z	(kg/m) 0,43

Epaisseur : ± 0 / ± 0 , Poids : ± 5 %

LANIERES M1 - AUTOEXTINGUIBLE

CARACTERISTIQUES

Lanière de porte en PVC souple transparent, catégorie M1 suivant le classement de réaction et de résis-

UTILISATION

Confection de portes souples pour bâtiments, séparations dans un atelier, protections de machines, protections contre la poussière.

TOLERENCES GENERALES

Epaisseur: +0 / -0,3 mm, Largeur: +0 / -5 mm, Longueur: +1 à +2 %, Poids: ±5 %

M1 - COLORIS : CRISTAL TRA	INSPARENT
Largeur × épaisseur (mm)	Polds (kg/m)
200 × 2	0,48
300 x 3	1,10

LANIERES AS - ANTISTATIQUE

CARACTERISTIQUES

Lanière de porte en PVC souple transparent antistatique

UTILISATION

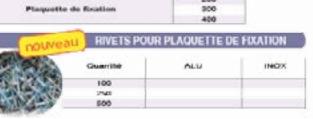
Confection de portes souples pour bâtiments, séparations dans un atelier, protections de machines, protections contre la poussière.

TOLERENCES GENERALES

Epaisseur: +0 / -0,3 mm, Largeur: +0 / -5 mm, Longueur: +1 à +2 %, Poids: ±5 %

6	COLORIS : CRISTAL TRANSPARENT		
	Largeur × épaisseur (mm)	Polds (kg/m)	
	200 x 2	0.48	
	300 x 3	1,10	

SYSTEME DE SUSPENSION & RIVETS


CARACTERISTIQUES

Profilé en inox 304 de 1 m de long, pourvu d'un système d'accrochage **TOLERENCES GENERALES**

Jeu de plaquettes, soit plaque et contre-plaque en inox 304 Visserie et boulonneries non fournies

PANNEAUX SOUPLES EN PVC

CARACTERISTIQUES

Panneaux souples en PVC transparent

UTILISATION

Portes battantes, revêtement de surface, matière à découper, etc...

TOLERENCES GENERALES

Epaisseur: +0 / -0,3 mm, Largeur: +0 / -5 mm, Longueur: +1 à +2 %, Poids: ± 5 %

Longueur 30m	
(mm)	(hg-hri)
1000 x 2	2,50
1000 # 3	20,7%
1000 x 4	5.00
1000 × 5	6.25
1000 x 7	8,75
1200 × 2	0,00
1200 × 3	4,50
1200 × 4	6,00
1200 × 5	7,60
1200 × 7	10,10
1990 x 2	2,7%
1000 x 3	5,640
1900 x 4	7,50
1900 x 9	9.30
1900 x 7	10,10

RACCORS & COLLIERS

NOTES

RACCORS & COLLIERS

RACCORS EXPRESS

Raccord rapide symétrique où tous les diamètres peuvent être couplés entre eux Surtout utilisé pour des flexibles à air comprimé Dimensions entre les griffes : 42mm. Pression Nominale : 10 Bars

EMBOUT CRANTE

LAITON		
6 - 8 mm		
7 - 9 mm		
9 - 11 mm		
11 - 13 mm		
13 - 15 mm		
1G 10 mm		
19 - 21 mm		
22 - 24 mm		
25 - 27 mm		

FILETE - MALE

LAITON	
1/4"	
3.8"	
1/2"	
3.4"	
1*	
1*1/4	

TARAUDE FEMELLE

LAITON	
1/4"	
2.9"	
1/2"	
3.4*	
1"	
1*1/4	
	1/4" 2/8" 1/2" 3/4" 1"

COQUILLE DE SERRAGE EN ACIER

16 - 18 mm
19 - 21 mm
22 - 24 mm
25 - 27 mm
28 - 30 mm
31 - 33 mm
34 - 36 mm
37 - 39 mm

BOUCHON

LAITON

JOINTS

NBR noir NEOPRENE rouge FPM

RACCORS GUILLEMIN (Alu, Inox, Bronze, PP)

Le raccord GUILLEMIN est un raccord rapide, symétrique, économique et efficace dont les domaines d'applications sont très nombreux en France (Industrie, Agricole, TP...). Tous les raccords de même diamètre nominal (DN) peuvent être couplés entre eux. Au moins un des deux demi-raccords doit être équipé d'un verrou pour le montage.

Pression Nominale: 16 Bars (Aluminium, Inox, Bronze) et 6 Bars (Polypropylène)

DEMI-RACCORD A DOUILLE CRANTEE

Diamètre nominal	sur crans (mm)	
DN 20	25	
DN 26	30	
DN-32	32	
DN 32	36	6.
DN 40	25	
DN 40	30	
DN 40	35	5.0
DN 40	40	
DN 40	46	et . 0 F
DN 60	46	
DN 60	61	
DN 60	66	
DN 66	63	
DN 66	76	
DN 80	78	
DN 80	80	
DN 80	90	
DN 100	102	
DN 100	105	
DN 100	110	
DN 150	150	

JONCTION MALE (FILETE AVEC VERROU)

DN 20-5N2*
DN 26-41*
DN 35-41*A
DN 40-41*A
DN 40-42*
DN 50-62*
DN 66-63*
DN 60-64*
DN 150-65*

ALUMINIUM INOX (316) BRONZE POLYPROPYLENE

JONCTION FEMELLE (TARAUDE AVEC VERROU)

DN 20x302*
DN 25x1*1A*
DN 40x1*1A*
DN 40x2*
DN 50x2*
DN 66x2*
DN 66x2*
DN 66x2*
DN 66x2*
DN 60x3*
DN 100x4*
DN 150x6*

RACCORS GUILLEMIN (Alu, Inox, Bronze, PP)

BOITE MALE (FILETE SANS VERROU) RACCORD DE REDUCTION AVEC VERROU ALUMINIUM ALUMPHUM BRONZE DN 20 x DN 40 DN 30 x DN 40 DN 25 x DN 50 DN 95×1*1.4 BRONZE DN 40×1"1/2 DN 50×2" DN 80 × DN 50 DN 40 × DN 50 DN 40 × DN 65 DN 50 × DN 65 DN 65-2"1/2 DN 80x3" DN 40 x DN 80 DN 50 x DN 60 DN 65 x DN 60 BOITE FEMELLE (TARAUDE SANS VERROU) DN 40 × DN 100 DN 80 × DN 100 Diametre riceressi DN 20x3/4" ALUMINIUM DHI 86 - DHI 100 DHI 80 - DHI 100 (916) DN1100 × DN 100 DN 35×1"1A BRONZE **BOUCHON + VERROU** DN 40x2" DN 50x2" ALUMINIUM (316) DN 65×2" DN 20 CM 66-071/0 BBONZE DN 80-01 DN 40 DN 65 DN 65 DN 80 DN 100 DN 150 BOUCHON PLAT TYPE IRRIGATION CADENASSABLE Districtive recentled DN 40 ALLEMPHUM (910) DN 65 DN 60 **BOUCHON SIMPLIFIE A POIGNEE ET CHAINETTE** UN 40 UN 50 UN 50 DN 60

RACCORS GUILLEMIN (Alu, Inox, Bronze)

RACCORS A CAMES (Alu, Inox, Bronze, PP)

Le raccord rapide pour une connexion sûre et rapide. Celui-ci se compose d'un Coupleur et d'un Adapteur qui peuvent coupler dans le même diamètre nominal. Les coupleurs sont équipés d'un système de verrouillage simple qui à l'aide de deux goupilles de sécurité bloque les leviers.

TYPE A-ADAPTEUR - FEMELLE - TARAUDE	TYPE A . AD	APTE	IIR F	EMELLE TARALIDE	TYPE E. A	DAPTE	IIR .	A DOUILLE CRANTEE
Mark	TIFE A-AD	-	1 1	EMELLE - IANAUDE	TIFEE-K			OUTLLE CHANTEL
10 1 1 1 1 1 1 1 1 1		(mm)	росон	7.2660				
13	690			The second secon	\$2 to 100			
10		25	1				- 2	
Section Sect				Polgrupyline	18.00			
Type R					(6.0)	40		
TYPE COUNTIELLE - IAHAULE TYPE No. 200 TYPE N	1990						-	
Type R - Couple File - Male F - File FTF See 100 125 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150 152 150								
TYPE C COUPLEUR ADOUILLE CRANTEE 10								
TYPE R - COUIPI FUR - MAI F - FII FTF 10						125	127	
Type Abarbin Date Date	TWO CO.	-		MALE FRETE			17.00	
Type Date No. 3	TYPE R-1		1	- MAIF - FII FIF	710-5		1000	
10 10 10 10 10 10 10 10		(mm)	posco	limbio.	TYPEF	VDV	PIEUF	MALE FILETE
14 18 18 19 19 19 19 19 19				The second second				
19 19 19 19 19 19 19 19				**C ***C ***C ***C ***C ***C ***C ***C		100,000		
1				Polypropylone				
15	-							
199 4 158 5 159 6 2 65 25 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 6 159 159 6 1	0		29					
TYPE C COUPLEUR A DOUILLE CRANTEE	100				(AT 10)			
159 8 100 3 170 4 156 5 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 15								
TYPE C COUPLEUR A DOUILLE CRANITEE TO						80		
150 6 200 5 200 5 200 5 200 5 200 5 200 5 200 5 200 5 200 5 200	AND DESCRIPTION OF THE PARTY OF			SAN CONTRACTOR STATEMENTS				
More Section More More	TYPE C CC	OUPL	100000000000000000000000000000000000000	A DOUILLE CRANTEE				
18 18 180 180 23 180 23 180 23 180 23 23 180 23 180 23 180 23 180 23 180 23 180								
1	-				TYP ± K (D	C) - BO	UCHO	N COUPLEUR
12 32 32 33 Falgrouplies 13 19 19 19 19 19 19 19	Manage							7
19				100 700 000 000 000		-	- T	
100 102 107 109				1979070031			7.4	
100 102 123 127 150 152 128 128 128 129 128 128 129 128		65			1/2			
127 150 152 150	2511 11 1							
Type D - Goupleum - Femelle - Tamauue								
Type D - Goupleum - Femelle - Tamadue 100 125 150							7.0	
DN	ASSESSMENT OF THE PARTY OF	DESCRIPTION OF	The latest designation of	ALDINOSTIC PROGRAMMOND IN	The same of the sa			
	TYPE D- C		1 1	FEMELLE - TAHAUDE	200			
13 h; 200 19 4 25 1 Labor 100 4 100 4 100 4 100 4 100 6 200 TYPE P (DP) - BOUCHON ADAPTEUR BN (mm) 19 100 4 105 5 100 8 200 100 100 100 100 100 100 100								
25 1 Into 310 Labor Polypopylites TYPE P (DP) - BOUCHON ADAPTEUR BN (mm) 13 19 100 4 125 5 150 8 200 8	4			Marking				
32 14 44 18 94 18 94 19				The state of the s	TVDF D /D	D) PO	HOUGH	N ADADTEUD
54	No.	32	1%		TIPEPO	P) - DU	UUNU	MADAPTEUR
85 2t 13 19 19 19 100 4 125 5 15 12 40 50 65 65 60 100 125	1		1000	Polypopylere				
100 4 125 ± 150 8 200 8 200 8	0							
125 § 150 8 200 E							75.4	
150 8 200 8 50 65 80 190 125								
50 65 60 100 125			8					
100 125		200						
190 125					and the same			
125								

RACCORS CRANTES

Raccord à douille crantée ou douille lisse. Raccord cranté pour montage avec colliers. Raccord lisse pour montage avec coquilles. Pression Nominale : 16 Bars

-	**	a crace (mm)
	1/8	13
Contract of the last of the la	0.44	19
CONTRACTOR OF THE PERSON NAMED IN	1	26
THE RESERVE OF THE PERSON NAMED IN	1.64	30
A SHARE WATER	116	30
THE RESERVE OF THE PARTY OF THE	*	80
	214	66
1444	3	76
Land	4	100

	6.6.3	R. CLIBLID LLALO
THE THE	1.0	13
	9.44	10
A CONTRACTOR	1	25
The second secon	1.94	96
	174	38
	٠	80
	216	65
Labor		76
LANCE	4	100

COLLIERS A TOURILLONS PLEINS

		_	1000
COLLIERS AT	OURILLONS PLEINS		
Dimensions e (mm)	Pieces / bone		
17 × 19	100		
10 × 21	100		
20 x 22	100		
21 x 23	190		
23 x 25	100		
20 × 20	100		
29 × 31	100		
30 × 33	100		
31 x 33	100		
32 × 35	50		
34 × 37	50		
36 x 39	sn.		
38 × 41	60		
40 × 43	50		
43 x 40	50		
44 x 47	50		
45 x 51	50		
52 × 55	SA		
66 × 60	60		
60 × 63	50		
64×67	50		
66 x 73	50		
74 x 79	50		
76 × 80	SU.		
80 x 85	25		
80 × 91	25		
92 × 97	25		
96 x 103	25		
104 x 112	25		
110 × 118	25		
113 x 121	25		
122 × 100	25		
131 × 139	25		
140 x 146	25		
149 X 161	20		
182 X 174	241		
175 × 187	20		
188 × 200	10		
195 × 210	10		
201 × 213	10		
214 x 226	10		
227 X 239 240 x 252	10		

AREIL DE TENSION

COLLIERS A BANDE PLEINE

60 x 60

Collier de serrage en acier galvanisé W1, W2 ou tout inox W4 (304), les bords sont relevés et arrondis pour la protection du flexible. Sa construction (bande pleine) le rend très robuste et répond aux exigences de différents domaines tels que l'industrie, la maintenance, l'automobile ...

COLLIERS A B	ANDE PLEINE 9	ET 12 MM - ACIER W	COLLERS A BA	NOC PLONES ET 12	MM - ACKER GALVANISE W
22/12/2	Largeur 9 mm	Largeur 12 mm	The state of the s	Largeur 8 mm Largeur 12 mm	
a (max) Prices	Prices per sechet	Prices per sachet	e (mm)	PNICHS par sagnet	
10 x 16	100		8 x 14	100	
12 × 22	100		10 x 10	100	
16 x 25	100		12 x 22	100	
20 × 12	50	50	16 . 25	100	
25 x 40	50	50	26 x 32	50	
32 × 90	50	25	25 × 40	36	
40 × 60	-	10	30 x 46	50	
80 × 70		46	32 x 50	50	

Dimensions e (mm)	Largeur 9 mm Largeur 12 mm PMcos par sagnet
8 x 14	100
10 x 10	100
12 × 22	100
16 + 25	100
26 x 32	50
25 x 40	160
30 x 46	50
33 × 90	80
40 x 60	50
90 x 70	10
60 x 60	10
78 x 80	10
80 × 100	10
90 × 110	10
106 x 120	10
110 x 120	16
128 x 140	10
138 x 100	10
140 x 160	10
156 x 176	10
166 × 180	10
179 x 100	16
180 x 200	10
100 v 210	10
206 x 220	10

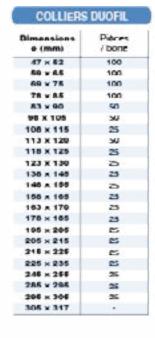
COLLIERS A OREILLES

Colliers à oreilles en acier galvanisé ou acier inoxydable pour montage et serrage rapide par pincement des oreilles. Ce type de serrrage est souvent utilisé dans des domaines tels l'air comprimé, la pulvérisation, l'agricole, ...

CU	LLIERS A OREILLES
Pla	nge de serrage (mm)
	3 X /
	7 × 9
	9 x 11
	10 x 12
	44 :: 42
	13 x 15
	14 × 17
	13 A 10
	17 x 20
	18 × 21
	20 x 23
	22 × 24
	23 x 27
	25 x 25
	10 4 03
	31 x 34
	34 × 37
	37 × 40
	40 - 43
	43 x 46

BANDINOX

Bande de serrage adaptable à toutes les dimensions. Fortement conseillé pour les tuyaux à paroi fine. Le Bandinox (304) est très couramment utilisé dans l'industrie, l'agriculture, la maintenance, ...


	BAND	ES				
Largeur (mm - ")	Epaisseur (mm)	Longueu	P0(05	î,	160	A STATE OF
6,4-16	0,8	90	0,0			7000
9,5	0,64	30	1,4		COLO.	1125
12,7 - 16	0,75	30	2,1		00000	
16.0 - 5/8	0.75	:90	2.6		100	-
10 - %	0,76	90	9,0			Section 1
		ATI	ACHES)	
. 1.		-	outres arcote	GWUZ (KB)		
1	6.4	- 16	100	0,15		
1	9.5	- 3/8	100	0,43		
Water and		- 16	100	1,06		

COLLIERS MONOFIL ET DUOFIL

10,0 - 5/0 19 - %

Collier de serrage en acier galvanisé, particulièrement adapté aux flexibles à paroi fine (gaines d'aspirations type ALFAVAC, ALFASPIR...)

Ø (mm)	/bone
77 × 83	
84 × 90	100
89 v 95	100
103 x 110	100
113 x 120	100
147 X 154	100
153 x 160	100
160 X 170	50
175 X 185"	50
190 x 200	50
198 x 208	
310 x 320	25
346 x 356	25
396 ★ 406	25
500 × 510	25
600 × 610	es

NOTES	

VANNES SPHERE LAITON

Utilisation:

•Chauffage sanitaire, eau potable, climatisation, arrosage et irrigation.

- 40 bars jusqu'au DN1». 30 bars pour DN1»1/4. 25 bars pour DN1»1/2. 20 bars pour DN2».
- 10 bars au-delà.

TS:-10 °C à +120 °C.

Construction:

- Corps Laiton titré CW617N interne brossé et externe nickelé.
 Sphère Laiton titré CW614N chromée.
- Joints de sphère PTFE.
- Presse-étoupe PTFE.

6 saminal	1/8*	Mr.	1/2"	300	P	171/4	1" 1/2	2	P1/1		
Passage	- 9	10	15	20	24.5	32	40	50	63	79	99
PS.	40	40	40	40	40	30	25	20	10	10	10
Ref	23509002	23509003	23509004	23509005	23509006	23509007	23509008	23509009	23509010	23509011	23509012
Prix HT											

VANNES SPHERE LAITON NICKELE - POIGNEE ACIER PLATE ROUGE

₫ nominal	1/2*	3/4"	3/4"
Sortie	3/4"	3/4"	1"
Tétine	19	19	20,5
Ref	23696045	23696055	23696056
Priv HT			

VANNES SPHERE LAITON SERIE CADENASSABLE

556. FEMELLE - FEMELLE

B nominal	1/4"	1/8"	1/2"	8/4"	T.	1"1/4	L NI	2"
Ref	23556002	23556003	23556004	23556005	23556006	23556006	13556008	23556009
Prix HT								

557. FEMELLE - FEMELLE AVEC DECOMPRESSION EN FERMETURE

Ø nominal	1/4"	3/8"	1/2*	3/4"	1"
Ref	23557002	23557003	23557004	23557005	23557006
Dain LET					

Schéma : vanne fermée

VANNES SPHERE LAITON

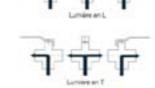
Utilisation:

- Fluides courants compatibles.
- PS: 16 bars. TS:-10°Cà+120°C.

Construction:

- Corps et sphère Laiton.
- Joints de sphère PTFE. Presse-étoupe PTFE.

513. LUMIERE EN L 514. LUMIERE EN T


535. LUMIERE EN T

Ø nominal	1/4*	3/8"	1/2"	3/4"	17	1" 1/4	1" 1/2	2"
Passage	11	11	11,5	15	20	25	32	40
Ref - 513	23513002	23513003	23513004	23513005	23513006	23513007	23513008	23513009
Ref + 514	23514002	23514003	23514004	23514005	23514006	23514007	23514008	23514009
Prix HT								

VANNES SPHERE PVC

- 16 bars jusqu'au DN2».
- 10 bars au-delà.
- Δp maxi. 3 bars.

TS:0°Cà+60°C maximum.

Construction:

- Corps et sphère en P.V.C-U.
- Joints de sphère HDPE.
- Double joint torique EPDM à l'axe. TS : 0 °C à +60 °C maximum.

583. AVEC EMBOUT A COLLER

Ø Raccord	20	25	32	40	50	63	75	90
Passage	15	20	25	32	40	50	63	75
Ref	23583020	23583025	23583032	23583040	23583050	23583063	23583075	23583090
* 1 10								

584. AVEC EMBOUT A TARAUDES

gi Raccord	1/2*	3/4"		1" 1/4	1" 1/2	r	2" 1/2	
Ref	23584004	23584005	23584006	23584007	23584008	23584009	23584010	23584011
Prix HT								

CLAPET LAITON

303. FEMELLE - FEMELLE - TS: 100°C

Ø naminal	3/8"	1/2*	3/4"		1" 1/4	F 1/2	7	2"1/2		
PS:	16	16	16	16	10	10	10	8	8	8
Ref	23303003	23303004	23303005	23303006	23303007	23303008	23303009	23303010	23303011	23303012
Prix HT										

CLAPET METAL

386. ENTRE BRIDE - TS: 200°C - PS: 400 BARS - DN 15 - 100

Ø nominal		20	25	12		50	- 65		100
Ecartement	16,5	20	22	28	32	40	46	50	60
Ref 23	3386015	23386020	23386025	23386032	23386040	23386050	23386065	23386080	23386100

CLAPET

388. FEMELLE - FEMELLE - INOX316 - A BILLE - PS: 400 BARS - TS: 180°C 389. AVEC TARAUDAGE N.P.T

Ø nominal	1/4"	3/8"	1/2"	3/4"	17
Ref - 388	23388002	23388003	23388004	23388005	23388006
Ref - 389	23389002	23389003	23389004	23389005	23389006
Prix HT					

CLAPET SIMPLE BATTANT LAITON

301. FEMELLE - FEMELLE - SIEGE METAL - PS: 10 BARS - TS: 90°C 302. FEMELLE - FEMELLE - SIEGE CAOUTCHOUC - PS: 10 BARS - TS: 60°C

Ø nominal	3/8"	1/2"	2/47	r	1"1/4	1" 1/2	r
Conditionment	18	16	15	10	. 8	5	1
Ref - 301	23301003	23301004	23301005	23301006	23301007	23301008	23301009
Ref - 302	23302003	23302004	23302005	23302006	23302007	23302008	23302009

CLAPET SIMPLE BATTANT INOX

320. FEMELLE - FEMELLE A BATTANT - PS: 16 BARS - TS: 150°C

g nominal	1/47	2/8*	1/2"	3/4"	r	3" 1/6	1"1/2	2"
Ref	23316002	23316003	23315004	23316005	23316006	23316007	23316008	23316009
Prix HT			100000000000000000000000000000000000000		10000000			

CLAPET SIMPLE BATTANT FONTE

360. A BRIDES GN16 - SIEGE METAL - PS: 16 BARS - TS: 120°C

362. A BRIDES GN16 - SIEGE EPDM - PS: 16 BARS - TS: 80°C

# manifest		50	(6)		100	125	150	100
Ecartement	180	200	240	260	300	350	400	500
Ref - 360	23360040	23360050	23360065	23360080	23360100	23360125	23360150	23360200
Ref - 362	23362040	23362050	23362065	23362080	23362100	23362125	23362150	23362200

techniques | tecindus@orange.fr / TEL: 03.22.712.712

CLAPET SIMPLE BATTANT ACIER

364. ENTRE BRIDES GN16 - EN ACIER ZINGUE - JOINT NITRILE - PS: 16 BARS - TS: 100°C

Ø nominal		59	- 65		300	125	150	200	200	300	250	400	400	500	800
biartenerit	14	.14	34	14	18-	18-	20	22	28	28	58	- 41	50	31	38
Tel	23364040	23364750	23364065	13364000	23364106	23364125	23364150	23364200	13364250	23364306	23964350	25364400	23364450	13364580	23384606
Prix HT															

CLAPET SIMPLE BATTANT INOX

365. ENTRE BRIDES - EN INOX - JOINT FKM - PS: 16 BARS - TS: 200°C

p montred	-	90	- 65	- 10	100	125	110
Ecartement	14	14	14	14	18	18	20
Ref	23365040	23365050	23365065	23365080	23365100	23365125	23365150
Prix HT							
200	250	300	250	400	450	500	600
22	26	28	36	41	50	56	56
23365200	23365250	23365300	23365350	23365400	23365450	23365500	2336560

CLAPET DOUBLE BATTANT FONTE

370. ENTRE BRIDES GN10/16 - EN FONTE - CLAPET FONTE NICKELE - PS: 16 BARS - TS: 110°C

p montest	100	**		330	125	150	200
Ecartement	54	54	57	64	70	76	95
Ref	23370050	23370065	23370080	23370100	23370125	23370150	23370200
Prix HT							
250	300	35	10		450	500	600
108	144	184	1	91	203	213	222
23370250	2337030	00 23370	350 2337	70400 23	370450	23370500	23370600

CLAPET DOUBLE BATTANT INOX

372. ENTRE BRIDES - JOINT FKM - PS: 25 BARS - TS: 200°C

300	155	135	100		-	45	-	Ø marrieral
95	76	70	64	7	- 5	54	54	Ecartement
23372200	23372150	23372125	23372100	2080	2337	23372065	23372050	Ref
								Prix HT
600	500	450	10			354	300	250
222	213	203	I	19	4	184	144	108
23372600	3372500	372450 2	400 23	2337	350	23372	2337230	23372250
				52211				

CLAPET A BOULE335. TARAUDE - 1" A 1"1/2 BOULE RESINE REVETUE NITRILE - 2" A 3" BOULE ALUMINIUM CORPS FONTE - PS: 10 BARS - TS 70°C - AVEC TRAPPE DE VISITE

# nominal	1	1" 1/4	1" 1/2	2"	2"1/2	
Ecartement	141	141	150	175	214	248
Ref	23335006	23335007	23335008	23335009	23335010	23335011
Bully MT						

CLAPET A BOULE

336. A BRIDE - DN40 RESINE REVETUE NITRILE - DN50 A 200 BOULE ALUMINIUM REVETUE NITRILE DN250 A 400 FONTE REVETUE NITRILE - PS: 10 BARS - TS 70°C - AVEC TRAPPE DE VISITE

Ø numinal	40	1 10 10	65		100	125	150	200/10	260/10	300/10	350/10	400/10
Ecartement	180	200	240	260	300	350	400	500	600	700	800	900
Ref	23336040	23336050	23336065	23336080	23336100	23336125	23336150	23336200	23336250	23336300	23336350	23336400
Prix.HT												

CLAPET A LEVEE VERTICALE

350. EN BRONZE - SIEGE ET CLAPET EN ACIER INOX - PS: 16 BARS - TS: 200°C

D sominal	1/41	3/8"	1/2"	3/41	r	1'1/4	1"1/2	2"
Red	23350002	23350003	23350004	23350005	23350006	23350007	23350008	23350009
Prix HT								

CLAPET A LEVEE VERTICALE 354. EN BRONZE - SIEGE EN ACIER INOX - CLAPET TEFLON - PS: 16 BARS - TS: 180°C

Ø nominal	1/4"	9/6"	1/1"	W	*	1"101	1"1/2	r
First	23354002	23354003	23354004	23354005	23354006	23354007	23354008	23354009
60 A 1 A 100								

techniques | tecindus@orange.fr / TEL: 03.22.712.712

CLAPET A CREPINE - CLAPET DE PIED 304. LAITON - VERTICAL - EAU - JOINT CAOUTCHOUC

Ø nominal	1/2"	1/4"	· P	1" 1/4	1.1/3	r	P1/2	r	
transmitted.	12	16	15	10	. 5	1	1	1	1
Ref	23304004	23304005	23304006	23304007	23304008	23304009	23304010	23304011	23301012
Prix HT									

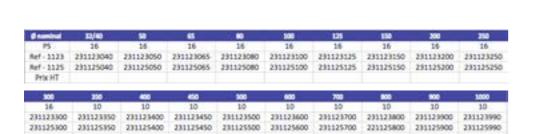
CLAPET A CREPINE

363. A BRIDE GN16 - EN FONTE - AVEC CREPINE ACIER GALVANIS2 - 110°C MAX

Engrand	50	65		100	125	150	290	250	300
Ref	23363050	23363065	21363080	21363100	23353125	23363150	23363200	23363250	23363300
Prix HT									

CREPINE SEULE SANS CLAPET 392. FILETAGE PLASTIQUE - MAILLE INOX

Ø nominal	1/17	1/2"	3/47	T P	\$7.5/4	1,1/3	r	5.1/3	r	
Malle	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,5	1,5	- 2
Ref	23392003	23392004	23392005	23392006	23392007	23392008	23392109	23392010	23392011	23392012
Prix HT										


CLAPET DE NON-RETOUR 327. INOX 304 - FEMELLE / FEMELLE

Enemiral	587	897	100	M*	*	2"1/8	1110	*	mw		
P5	16	36	36	35	36	16	16	16	16	36	35
Ref	23927002	21327009	29327064	13327005	23327106	23327007	23327008	23927009	21327013	29327003	133270t2

VANNES A PAPILLON

1125. OREILLES DE CENTRAGE - CORPS FONTE EN GJL 250 - 7 NICKELE MACHETTE EPDM - PLATINE ISO - COMMANDE PAR LEVIER - TS: 110°C

VANNES A PAPILLON

1123. OREILLES DE CENTRAGE - PAPILLON INOX 316 - CORPS FONTE EN GJL 250 -MACHETTE EPDM - PLATINE ISO - COMMANDE PAR LEVIER - TS: 110°C

& northead	40	10	- 4	-	100	125	150	360	250	200
Ref	231198040	231198050	231196065	231198080	231198100	231198125	231198150	231198200	231198250	231196300
Prix HT										

VANNES A SPHERE ACIER - INOX

705. CORPS ACIER - FEMELLE / FEMELLE -POIGNEE CADENASSABLE - SPHERE INOX

# nambal	Mr.	W	1/0"	3//	P.	37 8/4	r in	r	F1/2	r
15	64	-64	64	64	50	50	40	40	25	25
Red Ref Prix HT	12 21705002	32 23705003	15 23706004	20 23705005	25 23705006	32 23705007	40 23705008	50 23705009	65 23705010	80 23705011

VANNES A SPHERE INOX

715. CORPS INOX 316 - FEMELLE / FEMELLE - POIGNEE CADENASSABLE - SPHERE INOX

g numbed	2/8"	2/8"	1/2*	3/8"	*	17.1/8	1" 1/2		271/2	
PS :	64	64	64	64	50	50	40	40	25	25
Passage	12	12	15	20	25	32	40	50	65	80
Ref	23715002	23715003	23715004	23715005	23715006	25715007	23715008	23715009	23715010	29715011
Prix HT										

techniques industries tecindus@orange.fr / TEL: 03.22.712.712

VANNES A SPHERE ACIER - INOX 304

796. FEMELLE / FEMELLE 797. A SOUDER EN BOUT 798. A SOUDER EN POCHE

Enominal	W	ME	Ma.	3/4"	r	17.1/4	T 1/2	r	F1/2		
Paissage	30	10	15	. 20	25	32	40	50	65.	80	100
Ref - 796	23796002	23796003	23796004	23796005	23796005	23796007	23796008	23796009	23796010	23796001	23796012
Ref - 797	23797002	23797003	23797004	23797005	23797/006	23797007	23797008	23797009	23797010	23797051	23797012
Ref - 758	23798002	23798063	23798004	23798005	23798006	23798007	23798008	23798009	23798010	23798011	23798012

VANNES A SPHERE ACIER - INOX 316

790. FEMELLE / FEMELLE 791. A SOUDER EN BOUT 792. A SOUDER EN POCHE 744. FEMELLE / FEMELLE - TARAUDAGE NPT

d named	300	3/8"	1/2"	207	P.	PM	17.10		273/2		
Passage	30	10	15	20	25	32	40	50	£5	80	100
Ref - 790	23790002	23790003	2379004	23790005	23790006	23790007	23790008	237900009	23790010	23790011	23790012
Ref - 791	23791002	23799003	23791004	23791005	23791006	23791007	23791208	23791009	23790000	23791011	23791012
Ref - 792	23792002	23792003	19792004	23792005	23792006	23792007	23792308	21792009	23792010	23792011	23792012
Ref - 744	23744002	23744003	23744004	23744005	23744006	23744007	23744008	23744009	23744010	23744011	23744012

REHAUSSE POUR VANNES

POUR SPHERE 3 PIECES (790, 791, 792, 796, 797, 798, 744)

VANNES A SPHERE ACIER - INOX 730. CORPS ACIER - SPHERE INOX 304 - DIRECTIVE 92/23/CE n°0036

POIGNEE CADENASSABLE - BRIDES GN 40 - TS: 180°C - PN40

Ø nominal	15	20	25	32	40	50	65		300
Passage	15	20	25	32	40	50	65	80	100
Ecartement	130	150	160	180	200	230	290	310	350
Ref - 730	23730015	23730020	23730025	23730032	23730040	23730050	23730065	23730080	23730100
Ref - 731	23731015	23731020	23731025	23731032	23731040	23731050	23731065	23731080	23731100

VANNES A SPHERE INOX 731. CORPS INOX CF8M - SPHERE INOX 304 - DIRECTIVE 92/23/CE N°0036 POIGNEE CADENASSABLE - BRIDES GN 40 - TS: 180°C - PN 40

Enumbel	15	20	25	D	- 10	50	85		100
Passage	15	50	25	32	40	50	65	80	100
Ecartement	130	150	160	180	200	230	290	310	350
Ref - 730	23730015	23730020	23730025	23730032	23730040	23730050	23730065	23730080	23730100
Ref - 731	23731015	23731020	23731025	23731032	23731040	23731050	23731065	23731080	23731100

VANNES A TROIS VOIES

CORPS INOX 316 - TARAUDEES - PS : 40 BARS - TS:140°C - CADENASSABLE 780. LUMIERE EN L

781. LUMIERE EN T - ETANCHE SUR LES 3 VOIES

6 nominal	1/4"	3/8"	1/2*	3/4"	1	1" 1/4	1" 1/2	r
Passage	11	- 11	12,7	16	20	25	32	38
Ref - 780	23780002	23780003	23780004	23780005	23780006	23780007	23780007	23780009
Ref - 781	23781002	23781003	23781004	23781005	23781006	23781007	23781008	23781009

VANNES A OPERCULE

MONOBLOC

102. LAITON - PN16 - FEMELLE / FEMELLE - PS: 16 BARS DN 1/4" AU 2 ", 10 BARS AU-DELA - TS: 80°C

# standard	1/0"	1/1"	187	257	-	17176	27.549	*	252	- 2	
Ref	11101012	23102003	23102804	231,02005	23102306	20102007	233020008	23102009	23302010	53000013	23002013

VANNES A OPERCULE

2 PIECES - FONTE - POUR EAU

180. A BRIDES GN10 - TIGE A VISE INTERIEURE - PS: 10 BARS - TS: 90°C - PS: 10 BARS (DN200 A 300)

Entering	-		- 65		100	125	150	200	250	300
Economics	140	150	170	180	190	200	230	230	250	270
861	29180040	23180050	23180065	23180080	23180100	23180125	23180150	23180200	23180250	23180300

techniques |

ROBINET A SOUPAPE FONTE

479. HAUTE TEMPERATURE VAPEUR 10 BARS NE CONVIENT PAS POUR FLUIDES THERMIQUES -10° A +300°C; PN16

Southel	- 11	-		- 11					100	- 100		-
PS	38	24	36	15	24	.36	35	26	-36	15	16	.36
m	26	34	36	26	24	36	36	26	36	36	16	26
Surrevent.	136	130				250		390		400	460	600

ROBINET A SOUPAPE FONTE

476. ETANCHEITE A SOUFFLET INOX 316 - 25 BARS JUSQU'AU DN50 - 10 BARS AU-DELA -10° A +350°C

-			-				100		-	185	-	
PS	15-	25-	25	B-	25	. 25	36	16	-36	36	16	-36
m	25	25	25	85	25	-25	25	24	36	35	16	16
Ittariement.	110	190	760	180	200	293	290	830	350	406	.460	600
195	23479005	20474820	29476025	23476002	20476040	29476050	23479065	20479880	29476100	23476326	20474550	23474200

ROBINET A SOUPAPE ACIER471. HAUTE TEMPERATURE VAPEUR 10 BARS NE CONVIENT PAS POUR FLUIDES THERMIQUES -20° A +400°C; PN40

Promoted	-			100					-	- 100	-	-
.76	40.	46	40	40	40	40	40	40	40	40	40	46
Pig	40	40	40	. 40	42	40	. 40	40	40	60	40	40
Diamenent	130	150	260	180	300	230	290	300	350	#00	460	900
441	25473935	39475030	ENGTERNS.	29477568		21471.090	CARTEGAS	29479390	25673360	24071325	23471192	49033200

ROBINET A SOUPAPE ACIER

475. ETANCHEITE A SOUFFLET INOX 316 - 25 BARS JUSQU'AU DN50 - 10 BARS AU-DELA -20° A +400°C; PN40

-	.00								-	125	-	-
96	40.	40		40	40.	. 40	- 40	40	40	40	40	40
PN:	40	40	40	40	40	40	40	40	40	40	40	40
Ittiriement	350	£90	380	180	. 203	290	290	319	MC.	400	480	600
145	23475065	23475618	19479025	21475003	23405040	13479390	23475065	23475080	20475100	29475125	23475150	20475300

FILTRE EN Y A TAMIS TARAUDES
202. BRONZE - BOUCHON LAITON - CARTOUCHE INOX MAILLE 4/10° JUSQU'AU 1" 5/10° AU-DELA - PS: 16 BARS JUSQU'A 2", 10 BARS AU-DELA - TS:120°C 203. TYPE GAZ - CARTOUCHE INOX MAILLE 3/10°

Enemial	107	1/7"	397	P.	T-1/4	1,145	7	2'1/2	r	
Ref - 202	23202003	23202004	53505000	23200000	25002007	25202008	23202009	23212010	23202011	52505075
Raf - 203	23/209003	23203004	23203005	21200006	23303007	23203006	23203009	23203010	23209311	20200002

FILTRE EN Y A TAMIS TARAUDES

210. BRONZE - BOUCHON LAITON - AVEC VANNES DE RINCAGE 1/4 EN 1/2" ET 3/8 AUTRES DN CARTOUCHE INOX MAILLE 3/10° - PS: 16 BARS - TS: 120°C

d'agrical	40"	800	10	171/8	17.5/2	P
Naile	3/10"	3/10"	3/50"	3/10"	3/20"	3/10"
Bof	23200004	23210005	23230005	23210007	2321000B	23230009
PrixHT						

ROBINET A FLOTTEUR 490. CORPS LAITON - POINTEAU ET SIEGE INOX - FLOTTEUR POLYETHYLENE - PS: 10 BARS A 20°C TS: 40°C (BREVETE, AVEC COMPENSATEUR REGLABLE SAUF DN 1/2")

Ø måle	1/8"	1/4"		27.5/8	171/1	
Ø Richard	300	190	180	120	229	300
Ø tube	533	20,5	20.5	17	32,5	42
mā/h -8barı	1,5	5	7,5	30	15	.27
Ref .	23490004	23490005	2349006	23490007	23490008	23490009

FILTRE EN Y - A TAMIS - A BRIDE
220. FONTE - A BRIDES GN16 JUSQU'A DN200 - AVEC BOUCHON DE PURC
DEMONTABLE EN INOX - PS : 16 BARS (10 BARS A PARTIR DU DN250

GE - CART 0) - TS: 12		-	
		0	X
	191		W.

	-	-	-						336	135	100
Maile tom:	- 1	1	1	1	1	1,5	1,5	1,5	1,6	1,8	1.6
Ecartement :	130	250	160	180	200	230	290	330	350	400	480
Purge	3/8"	3,0"	2/6"	1/0"	1/2"	1/7"	1/2"	3/4"	3/4"	3/4"	3/4"
GN											
Bef	23220005	23230000	23220025	23120032	21220040	21220050	23220065	23220080	23220100	23220125	21220150

300	200	258	250	100	300	250	- 60
1,6	1,6	1,6	1,6	1,8	3	3.	3
600	600	730	790	850	980 :	360	1100
1"	1"	1"	Le				
	35	. 50	16	10	16	10	10
29220200		23220250		21220100	23220301	23120750	23230400

Tube de bourdon laiton, soudé à l'étain

- Raccord laiton
- Classe 1.6

Vitre polycarbonate - Graduation en bar

- Protection IP65

MANOMETRE A BOITIER INOX

AXIAL - A BAIN - D.50 - RACCORD 1/4" BSP

Tube de bourdon laiton, soudé à l'étain

- Raccord laiton
- Classe 1.6

Vitre polycarbonate

- Graduation en bar
- Protection IP65

MANOMETRE A BOITIER INOX RADIAL - A BAIN - D.63 - RACCORD 1/4" BSP

Tube de bourdon laiton, soudé à l'étain

- Raccord laiton
- Classe 1.6

Vitre polycarbonate

- Graduation en bar / PSI
- Protection IP65

MANOMETRE A BOITIER INOX AXIAL - A BAIN - D.63 - RACCORD 1/4" BSP

- Raccord laiton
- Classe 1.6

Vitre polycarbonate

- Graduation en bar / PSI
- Protection IP65

MANOMETRE A BOITIER INOX

Tube de bourdon laiton, soudé à l'étain

- Raccord laiton
- Classe 1

Vitre polycarbonate - Graduation en bar

- Protection IP65

MANOMETRE A BOITIER INOX

AXIAL - A BAIN - D.100 - RACCORD 1/2" BSP

Tube de bourdon laiton, soudé à l'étain

- Raccord laiton
- Classe 1

Vitre polycarbonate

- Graduation en bar
- Protection IP65

MANOMETRE A BOITIER INOX - SPECIAL VAPEUR RADIAL - SEC - D.100 - RACCORD 1/2" BSP - VAPEUR

MANOMETRE TOUT INOX SPECIAL CHIMIE RACCORD DIAMETRE 63 - REGLABLE ET REMPLISSABLE SPECIAL CHIMIE RACCORD DIAMETRE 100 - REGLABLE ET REMPLISSABLE

il est résistant aux fluides et aux gaz agressifs et peut être monté dans des environnements difficiles.

SIPHON CORS DE CHASSE 1/2"G - DIN 16282 TYPE C - 300°C -80 BARS

Les siphons sont utilisés pour protéger les instruments contre les pulsations du process et les températures élevées.

Le siphon est raccordé directement à l'appareil ou, au robinet d'iso-lement situé en dessous de

Un condensat se forme dans le siphon et empêche l'entrée du fluide chaud dans l'appareil.

ROBINET DE MANOMETRE

1/2"G PN400 - A POINTEAU DIN16270 TYPE A - 200°C

- A pointeau et orifice de décompression.
- Corps en acier.
- Pièces internes en acier inox.
- Ecrou tournant 15x21.

ROBINET DE MANOMETRE EN LAITON MALE / FEMELLE

Corps Laiton

- Modèle à Décompression pour manomètres

ROBINET DE MANOMETRE EN LAITON MALE / FEMELLE A BRIDE

- Modèle à Décompression pour manomètres

THERMOMETRES VERTICAUX INDUSTRIELS

DROITS - HAUTEUR 150mm - PLONGEUR 63mm

Boitier aluminium en V permettant une lecture dans toutes positions Raccord laiton 1/2» BSP - Classe DIN 16195 - Plongeur D.10 mm Doigt de gant laiton usiné 1/2» BSP (en option)

THERMOMETRES VERTICAUX INDUSTRIELS

EQUERRES - HAUTEUR 200mm - PLONGEUR 100mm

Boitier aluminium en V permettant une lecture dans toutes positions Raccord laiton 1/2» BSP - Classe DIN 16195 - Plongeur D.10 mm Doigt de gant laiton usiné 1/2» BSP (en option)

THERMOMETRE A CADRAN TOUT INOX - VERTICAUX - D.100 - PLONGEUR 63mm

Thermomètre tout inox 316 - Mouvement Inox 316 - Tube soudé étanche Raccord 1/2» BSP - Protection IP66 - Plongeur D.8 mm - Classe 1 Doigt de gant inox usiné 1/2» BSP (en option)

THERMOMETRE A CADRAN TOUT INOX - AXIAUX - D.100 - PLONGEUR 100mm

Thermomètre tout inox 316 - Mouvement Inox 316 - Tube soudé étanche Raccord 1/2» BSP - Protection IP66 - Plongeur D.8 mm - Classe 1 Doigt de gant inox usiné 1/2» BSP (en option)

COMPTEUR

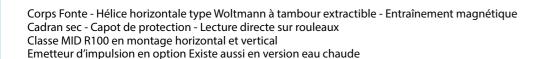
EAU FROIDE - MID R100 - PN16 (NORME ACS)

Corps Laiton - Turbine à jet unique - Entraînement magnétique - Cadran sec et orientable à 360° Capot de protection - Lecture directe sur 8 rouleaux

Classe MID R100 en montage horizontal avec cadran horizontal et Classe MID R50 en montage vertical et horizontal avec cadran vertical

- Emetteur d'impulsion en option - existe aussi en version eau chaude

COMPTEUR


EAU FROIDE - MID R100 - PN16 (NORME ACS)

- Emetteur d'impulsion en option
- Existe aussi en version eau chaude

COMPTEUR

TYPE WOLTMANN - EAU FROIDE - MID R100 - PN16

COMPTEUR A BRIDE IRRIGATION HELICE TANGENTIELLE - EAU FROIDE - CLASSE A- PN 16

Emetteur d'impulsion en option

Corps Fonte - Hélice tangentielle à tambour extractible - Entraîne- ment magnétique Cadran sec non orientable - Capot de protection - Lecture directe sur rouleaux

Classe A en montage horizontal - Pré équipé pour émetteur d'impulsion

ELECTROVANNE A MENBRANE ASSISTEE NF

Electrovanne à membrane assistée. Normalement fermée (ouverture sous tension). Corps laiton CW 617 N - PS: 10 bar - Pièces internes inox. DP mini: 0,3 bar - Membrane NBR - TS: 80°C. Température extérieure maxi.: 60°C. Membranes EPDM et FPM en option jusqu'au 3".

Bobine isolation classe F - Connecteur T30.

ELECTROVANNE

A MENBRANE ASSISTEE NO

ESM 87 - Electrovanne à membrane assistée. Normalement ouverte (fermeture sous tension). Corps laiton CW 617 N - PS: 10 bar - Pièces internes inox. DP mini: 0,3 bar - Membrane NBR - TS: 80°C. Température extérieure maxi: 60°C. Membranes EPDM et FPM en option jusqu'au 3″. Bobine isolation classe F - Connecteur T30.

ELECTROVANNE A COMMANDE DIRECT NF

VSO 84 - Electrovanne à membrane attelée.

Normalement fermée (ouverture sous tension).

Ne nécessite pas de pression différentielle.

Montage tuyauterie horizontale, bobine sur le dessus.

Corps laiton CW 617 N - PS : 10 bar - Membrane NBR - TS : 80°C. Température extérieure maxi. : 80°C.

Membranes EPDM et FPM en option.

ELECTROVANNE DE PURGE TEMPORISEE POUR FILTRES

Bobine isolation classe F - Connecteur T30.

T-20 - Electrovanne de purge temporisée. Alimentation : 230V ca - avec câble de 2m.

PS: 16 bar - TS: 90°C.

Fréquence d'ouverture : 0,5 à 45 minutes.

Temps d'ouverture : 0,5 à 10 secondes. Raccordement amont : 1/2» G. Mâle.

Raccordement aval: 1/4» G. Femelle.

Vanne de sectionnement - Filtre amont nettoyable.

Vanne pneumatique à siège incliné. Excellents coefficients de débit.

Corps incliné bronze CB 491K PN16 - Servomoteur PA66.

PS: 16 bar - Clapet inox et PTFE - TS: - 10 °C / + 180 °C.

 $\label{eq:Applications:tous fluides compatibles.}$

Dimension Face à Face normalisée : DIN 3202-4 M8.

Raccordements taraudés G.

Alimentation air: 8 bar maxi - raccordement 1/8 « G.

Version ATEX sur demande.

Option: platine à plan de pose NAMUR pour raccordement d'un électro-distributeur.

Version NF arrivée sur le clapet:

- Pour les fluides compressibles : par exemple vapeur.

- Déconseillée pour les liquides car cette version est génératrice de coup de bélier.

- Alimentation en air : 2,5 bar minimum.

Version NF arrivée sous le clapet:

- Pour les liquides, évite les coups de bélier.

- Alimentation en air : 4,2 bar minimum.

Version NO arrivée sous le clapet:

- Alimentation en air : 2 bar minimum.

VANNES PNEUMATIQUES

Vannes pneumatiques ARES Inox.

Excellents coefficients de débit.

Corps incliné inox 1.4408 PN 25 - Servomoteur PA66.

PS: 25 bar - Clapet inox et PTFE - TS: -10°C / +180 °C.

Application: Tous fluides compatibles.

Raccordements taraudé Gaz ou BW ou à Brides.

Dimension Face à Face normalisée: DIN 3202-4 M4. Alimentation air: 8 bar maxi - raccordement 1/8 « G.

Version ATEX sur demande.

Option: Platine à plan de pose NAMUR pour raccordement d'un électro-distributeur.

Version NF arrivée sur le clapet : - Taraudé gaz.

- Pour les fluides compressibles : par exemple vapeur.
- Déconseillée pour les liquides car cette version est génératricevde coups de bélier.
- Alimentation en air : 2,5 bar minimum.

Version NF arrivée sous le clapet:

- Taraudé gaz.
- Pour les liquides, évite les coups de bélier.
- Alimentation en air : 4,2 bar minimum.

Version NO arrivée sous le clapet :

- Taraudé gaz.
- Alimentation en air : 2 bar minimum.

Version NF arrivée sous le clapet :

- A souder BW.
- Idem ci-dessus.

Version NF arrivée sous le clapet:

- A brides.
- Idem ci-dessus.

Version NF arrivée sous le clapet :

- A clamp. (Nous consulter)
- Idem ci-dessus.

ELECTROVANNE PILOTE

Electrovanne pilote 3/2 - 1/8» en laiton. Avec commande manuelle - raccord orientable 1/8» M/F. Ø de passage: 1,3 mm.

ELECTRODISTRIBUTEURS

Electrodistributeurs à tiroir pour le pilotage des actionneurs pneumatiques.

- -Fluide : air ou gaz neutre filtré.
- -Corps aluminium étanchéité NBR.
- -Fonctions 3/2 et 5/2.
- -PS: 10 bar TS: -25°C / +50°C.
- -Alimentation G1/4" Echappement G1/8».

sauf 4212: Alimentation G1/4» - Echappement G1/4». Niveau SIL 3.

MATERIEL GAZ

FILTRE

QUANTOMETRE

NOTES

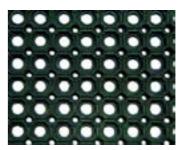
AUTOMATISME & REGULATION

ETUDE ET DEVIS SUR DEMANDE

NOTES

NOTES	

CHAUFFERIE & ETANCHEITE



FEUILLES SBR

Feuilles en SBR Dureté: ± 65 ShA Densité: 1,6 + 5%

Résistance à la traction : 65 kg/cm2 + 5% Allongement à la rupture : 300% Modèle de tapis caoutchouc polyvalent

SANS PU	- COLOHES : NOO	170	COLORIS: NOR
Epintoeun (mm)	Denemators.	tpanseur (mm)	Omersion (m)
1	1,40 × 10	2	1,40 x 10
1,5	1,40 + 10	1	1,80 + 10
2	1,40 x 10	4	1,40 x 10
1	1.40 x 10	5	1.40 x 10
4	1,40 ± 10		1,40 x 10
5	1.45 - 10		1.40 + 5
6	1,40 x 10	10	1,40 x 5
	1,40 x 3		more more annual
10	1.40 x 5	21/18	COLORES MORE
15	7,40 x 15	Exercent	Demonstore
20	1,00 x 1	Qmam ((m)
30	1,00 - 1	1	1,40 x 15
40	1,00 x 1		1,40 + 10
50	1,00 x 1		1,40 + 10
			1.40 x 10
			1,40 x 8
		10	140 x 2
		15	1,40 x 5

FEUILLES EPDM

Feuilles en EPDM - Dureté: ± 65 ShA - Densité: 1,5 + 5% Résistance à la traction : 40 kg/cm2 - Allongement à la rupture : 250% Résistance à l'ozone - Isolation électrique - Tenue aux acides dilués

(mm)	Dimensions (m)
1	1,40 x 10
2	1,40 x 10
3	1,40 x 10
4	1.40 x 10
6	1,40 + 10
	1,40 - 10
	1,40 x 5
10	1,40 x 5
15	1.40 x 0

FEUILLES NITRILE-NBR

Feuilles en Nitrile-NBR - Dureté : \pm 65 ShA - Densité : 1,5 + 5% Résistance à la traction : 40 kg/cm2 - Allongement à la rupture : 300% Résistance aux graisses et aux huiles minérales et animales -Bonne tenue aux essences Tenue aux acides dilués

FEUILLES NITRILE-NBR BLANC

Feuilles en NITRILE-NBR - Dureté: ± 65 ShA - Densité: 1,5 + 5% Résistance à la traction : 40 kg/cm2 - Allongement à la rupture : 250%

Résistance aux graisses et aux huiles minérales et animales - Bonne tenue aux essences Tenue aux acides

COLORS: BLAIC		
(mm)	Drawns.	
1	1,40 x 10	
2	1,40 x 10	
1	1,40 x 10	
	1,90 x 10	
	1,40 x 10	
6	1.40 x 10	
	1,40 + 0	

FEUILLES NEOPRENE

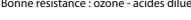
Feuilles en NEOPRENE - Dureté : ± 65 ShA - Densité : 1,5 + 5% Résistance à la traction : 40 kg/cm2 - Allongement à la rupture : 250% Résistance à l'abrasion - Résistance à l'ozone - Tenue aux acides dilués

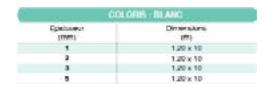
(percent (perc)	Ormensions (m)
1	1,40 x 10
2	1,40 + 10
3	1,40 x 10
4	1.49 x 19
	1,40 x 10
6	1,40 + 10
	1,40 x 5
10	1,40 + 1
15	1.40 x 5

FEUILLES PARA ANTIVIBRATOIRE

Feuilles en PARA - Dureté : ± 45 ShA - Densité : 1,2 + 5%

Résistance à la traction : 13 kg/cm2 - Allongement à la rupture : 550%


Atténuation vibratoire, résistance à l'abrasion (grenaillage, sablage) pour applications élastiques et d'amortissement



COLORIS DEIGE/BRUN		
Epatsseur (mm)	Dimensions (m)	
1	1,40 x 10	
2	1,40 × 10	
3	1,40 x 10	
4	1,40 x 10	
5	1,40 x 10	
	1,40 x 10	
8	1,40 x 10	
10	1,40 x 5	

FEUILLES SILICONE

Feuilles en SILICONE - Dureté: ± 60 ShA - Densité: 1,25 + 5% Résistance à la traction : 6 kg/cm2 - Allongement à la rupture : 400% Bonne résistance : ozone - acides dilués

FEUILLES VITON

Feuilles en VITON - Dureté : ± 70 ShA - Densité : 1,9 + 5%

Résistance à la traction : 6 kg/cm2 - Allongement à la rupture : 150%

Bonne résistance : ozone - acides dilués - Excellente résistance aux hautes températures

COLORIS: NOIR		
Epaisteur (reen)	Dimensions (m)	
1	1,00 x 10	
1	1.00 x 10	
3	1,00 x 10	

CAILLEBOTIS EN CAOUTCHOUC

Tapis en SBR - Dureté : \pm 65 ShA - Densité : 1,6 + 5% - Résistance à la traction : 65 kg/cm2 + 5% Allongement à la rupture : 300%

TAPIS FINE ET LARGE STRIE EN CAOUTCHOUC

Tapis en SBR - Dureté : \pm 65 ShA - Densité : 1,6 + 5% - Résistance à la traction : 65 kg/cm2 + 5% Allongement à la rupture : 300%

COLORIS NOR					
Epiensona (mm)	Deversors: (m)	Posts Fig. (in price)	TANSSTIRE FINE TANSSTRIC LANGE		
3	1,00 x 10	37,50			
	1.20 x 10	40.90			
3	1,00 x 10	67,50			
6	1.00 x10	90.00			
t.	1,20 x 10	108,00			

TAPIS CHECKER / CHECKER NBR

Tapis en SBR ou NBR

Dureté : ± 65 ShA - Densité : 1,5 + 5%

Résistance à la traction : 3.0 Mpa - Allongement à la rupture : 250%

	COLORIS - N	Offi	
Турм	Concour totale (mm)	Dimensions (m)	Podi Kg (le pike)
CHECKER SER	3	1.40 x 10	57.00
CHECKER HING		1185 v 10	17.00

TAPIS PASTILLE

Tapis en SBR - Pastilles +/- 24 mm

Dureté: ± 65 ShA Densité: 1,5 + 5%

Résistance à la traction : 3.0 Mpa Allongement à la rupture : 200%

	COLORIS : NOIR	
Epaksour totale (mm)	Dimensions (m)	Poids Kg (to pelco)
3	1,20 x 10	54,00
1,5	1,20 x 10	39,40
4,5	1,20 × 10	76,40

TAPIS MARTELE ET TAPIS GRANULE

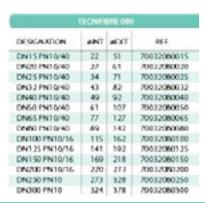
Tapis en SBR

Dureté : ± 65 ShA - Densité : 1,5 + 5% Résistance à la traction : 4.0 Mpa Allongement à la rupture : 250%

TAPIS DIAMANT ET TAPIS MINI DIAMANT

Tapis en SBR

Dureté: ± 65 ShA - Densité: 1,5 + 5% Résistance à la traction: 3.0 Mpa Allongement à la rupture: 250%



JOINT FIBRE POUR BRIDE

JOINT FIBRE POUR BRIDE

PN10 EP 2mm - GRAPHITE INOX

DESIGNATION	piNT	aCXT	REF
DN10 FN10/40	.18	46	70032100010
DN15 PN10/40	11	51	70032100015
DN20 PN10/40	27	61	70032100020
DN25 PN10/40	14	71	70632300029
DNJ2PN10/40	43	82	70032100033
DN48 PN10/40	49	92	70032100040
DN50 PN10/40	61	107	70032100050
DINES PNEO/40	77	127	70012100065
DN80 PN10/40	89	142	70032100080
DN100 PN10/16	115	162	70032100100
DN125 PN10/16	141	192	70032100125
DINT SCIPNTO/TIG	169	J18	70032100150
DN200 PN10/16	220	273	70032100200

JOINT TROU HOMME

GRAPHITE COMPRESSE

Joint polyvalent peut-être utilisé sur la partie vapeur et sur l'eau en partie inférieure immergée. Tous les joints proposés en qualité sont moulés. Pression maximum recommandée en vapeur saturée 40 b.

DIMENSSION STANDARD EH mm	
150 X 200 X 15 X 8	ref:7009150200
280 X 380 X 25 X 10	ref : 7009280380
290 X 390 X 25 X 10	réf : 7009290390
300 X 400 X 25 X 10	ref:7009300400
310 X 410 X 25 X 10	ref:7009310410
320 X 426 X 25 X 10	ref: 7009320420

TRESSE

POUR PORTE DE CHAUDIERE

Le gainage est constitué de fils de verre 550°C entrelacés autour d'une âme centrale en bande de verre haute température 1000°C de très grande pureté . Ces tresses sont de section ronde, carrée ou rectangulaire. La densité standard retenue pour nos tresses a été définie afin d'obtenir le meilleur compromis de souplesse et de dureté nécessaire à une fonction optimum de jointage.

11	850
carré de 10 mm	ref 4031650010
carré de 12 mm	ref 403T650012
carré de 15 mm	ref 403T650015
carrê de 20 mm	ref 4031650020
carré de 25 mm	ref 403T650025
carrê de 30 mm	ref 40116/500 to
carré de 40 mm	ref 403T650040

CARTON FIBRE CERAMIQUE

Le carton est composé de fibres minérales. Le choix des matériaux, la qualité apportée à sa fa-brication permettent à ce carton de répondre aux utilisations les plus contraignantes (1000°C).

FFUILLE DE 1000 X 1000		
D 2	403FECE02	
H-3	403FECE03	
EP4	403FFCF04	
FP5	403FECE05	
DV6	403FECE06	
FL.8	403FECE08	
FP10	403FECE10	

INDICATEUR DE NIVEAU

ROBINETTERIE POUR INDICATEUR DE NIVEAU

Corps acier carbonne forgé A 105 PN 40.

Ensemble de 2 robinets supérieur et inférieur + robinet de purge. Robinet à tournant cylindrique - Etanchéité graphite.

pour boitier indicateur avec tubulures 16 mm.

GLACE DE NIVEAU

Matière: borosilicate - géométrie polyprismatique - avec pré-contrainte thermique. Livrées avec joints d'étanchéité - Fibre + graphite.

PS: 34 bar - TS (vapeur): 243 °C.

INDICATEUR DE NIVEAU MAGNETIQUE

Corps en acier inoxydable.

Flotteur inox - Standard - Densité mini du fluide : 0,8. Règle de lecture à rouleaux en aluminium - Vitre en plexiglas.

PS: 16 bar - TS: 180 °C.

CONTACTEUR A FLOTTEUR

Corps inox - Flotteur inox 316 - boîtier aluminium.

PS:6 bar - TS:150 °C.

1 contacts inverseur réglable - P.E. PG 9.

Pouvoir de coupure : 16 A sous 230V AC / 0,5 A sous 125 V CC.

GARNITURE NIVEAU LAITON

Paire de robinets en laiton haut et bas et orifice de purge. PS: 10 bar - TS: 90 °C..

PURGEUR A FLOTTEUR RACCORDEMENTS TARAUDES

Mécanisme interne en inox.

TS: 250 °C - PS: 16 bar - Event thermostatique incorporé.

PURGEUR A FLOTTEUR RACCORDEMENTS A BRIDES

Mécanisme interne en inox.

TS: 250 °C - PS: 16 bar - Event thermostatique incorporé.

PURGEUR BI-METALLIQUE ACIER RACCORDEMENTS TARAUDES

Utilisation: pression différentielle maxi 22 bar - Filtre incorporé et anti-retour.

TS: 250 °C - PS: 32 bar.

Réglage possible de la capacité de décharge et de température des condensats.

PURGEUR BI-METALLIQUE ACIER RACCORDEMENTS A BRIDES

Utilisation : pression différentielle maxi 22 bar - Filtre incorporé et anti-retour.

TS: 250 °C - PS: 32 bar.

Réglage possible de la capacité de décharge et de température des condensats.

SOUPAPE FONTE - ACIER - LAITON - INOX

Mécanisme interne en inox - Siège durci et clapet poli miroir. Raccordements à brides entrée PN 40 / sortie

TS:-10°C/+300°C (6302) ou 425°C (6102).

suivant demande / avec et sans levier

SOUPAPE

HP LAITON A ECHAPPEMENT LIBRE

Portée NBR - TS : -10°C / +100°C. Raccordement entrée fileté Gaz mâle. Sans dispositif d'essai. Homologation selon 97/23 CE 0035 Tarages standards de 0,3 à 100 bar - Autres tarages sur délai.

SOUPAPE

HP LAITON A ECHAPPEMENT CANALISE

Portée FPM - TS : -20 °C / + 200 °C - Autres portée sur demande. Raccordements entrée et sortie filetés Gaz mâle. Molette d'essai. Homologation selon 97/23 CE 0035. Tarages standards de 0,5 à 12 bar (tous les 0.5 bar) - Autres tarages sur délai.

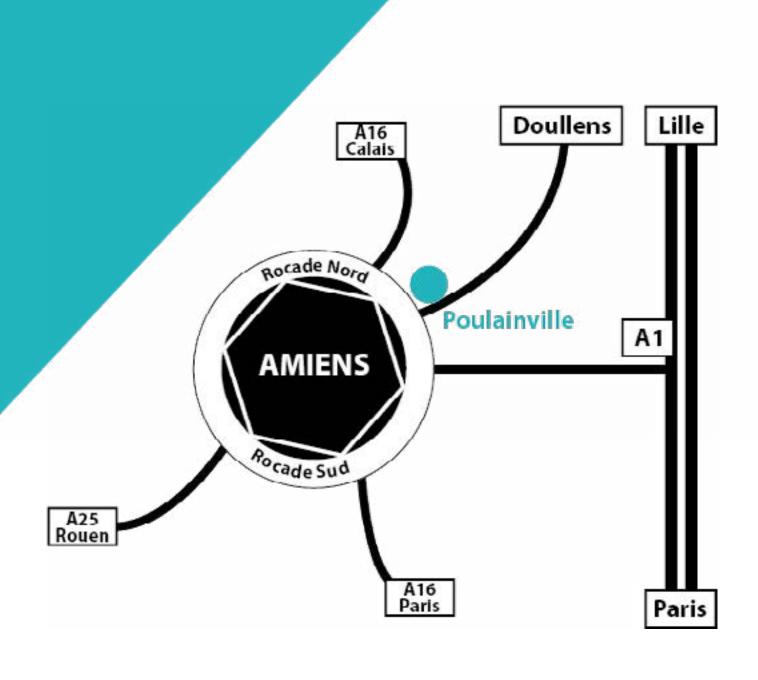
SOUPAPE

HP LAITON A ECHAPPEMENT CANALISE ET LEVIER POUR VAPEUR

CONTROLEUR DE CIRCULATION INOX TARAUDE A BATTANT

Corps en acier inoxydable 1.4408 - PS : 16 bar. Fonctionnement unidirectionnel. Double glace en verre trempé. TS : - 20 °C / + 180 °C. Battant en acier inoxydable.

CONTROLEUR DE CIRCULATION FONTE A BRIDES


PS: 16 bar - TS: +5 °C / 180 °C. Raccordements à brides ISO PN 16.

www.techniquesindustries.fr

ZA La Couture 80260 Poulainville

